A Universal Deep Learning Framework for Real-Time Denoising of
Ultrasound Images
- URL: http://arxiv.org/abs/2101.09122v1
- Date: Fri, 22 Jan 2021 14:18:47 GMT
- Title: A Universal Deep Learning Framework for Real-Time Denoising of
Ultrasound Images
- Authors: Simone Cammarasana, Paolo Nicolardi, Giuseppe Patan\`e
- Abstract summary: We define a universal deep learning framework for real-time denoising of ultrasound images.
We analyse and compare state-of-the-art methods for the smoothing of ultrasound images.
Then, we propose a tuned version of the selected state-of-the-art denoising methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultrasound images are widespread in medical diagnosis for muscle-skeletal,
cardiac, and obstetrical diseases, due to the efficiency and non-invasiveness
of the acquisition methodology. However, ultrasound acquisition introduces a
speckle noise in the signal, that corrupts the resulting image and affects
further processing operations, and the visual analysis that medical experts
conduct to estimate patient diseases. Our main goal is to define a universal
deep learning framework for real-time denoising of ultrasound images. We
analyse and compare state-of-the-art methods for the smoothing of ultrasound
images (e.g., spectral, low-rank, and deep learning denoising algorithms), in
order to select the best one in terms of accuracy, preservation of anatomical
features, and computational cost. Then, we propose a tuned version of the
selected state-of-the-art denoising methods (e.g., WNNM), to improve the
quality of the denoised images, and extend its applicability to ultrasound
images. To handle large data sets of ultrasound images with respect to
applications and industrial requirements, we introduce a denoising framework
that exploits deep learning and HPC tools, and allows us to replicate the
results of state-of-the-art denoising methods in a real-time execution.
Related papers
- Denoising Plane Wave Ultrasound Images Using Diffusion Probabilistic Models [3.3463490716514177]
High frame-rate ultrasound imaging is a cutting-edge technique that enables high frame-rate imaging.
One challenge associated with high frame-rate ultrasound imaging is the high noise associated with them, hindering their wider adoption.
Our proposed solution aims to enhance plane wave image quality.
Specifically, the method considers the distinction between low-angle and high-angle compounding plane waves as noise.
In addition, our approach employs natural image segmentation masks as intensity maps for the generated images, resulting in accurate denoising for various anatomy shapes.
arXiv Detail & Related papers (2024-08-20T16:31:31Z) - S-CycleGAN: Semantic Segmentation Enhanced CT-Ultrasound Image-to-Image Translation for Robotic Ultrasonography [2.07180164747172]
We introduce an advanced deep learning model, dubbed S-CycleGAN, which generates high-quality synthetic ultrasound images from computed tomography (CT) data.
The synthetic images are utilized to enhance various aspects of our development of the robot-assisted ultrasound scanning system.
arXiv Detail & Related papers (2024-06-03T10:53:45Z) - UNICORN: Ultrasound Nakagami Imaging via Score Matching and Adaptation [59.91293113930909]
Nakagami imaging holds promise for visualizing and quantifying tissue scattering in ultrasound waves.
Existing methods struggle with optimal window size selection and suffer from estimator instability.
We propose a novel method called UNICORN that offers an accurate, closed-form estimator for Nakagami parameter estimation.
arXiv Detail & Related papers (2024-03-10T18:05:41Z) - Speckle Noise Reduction in Ultrasound Images using Denoising
Auto-encoder with Skip Connection [0.19116784879310028]
Ultrasound images often contain speckle noise which can lower their resolution and contrast-to-noise ratio.
This can make it more difficult to extract, recognize, and analyze features in the images.
Researchers have proposed several speckle reduction methods, but no single method takes all relevant factors into account.
arXiv Detail & Related papers (2024-03-05T08:08:59Z) - Deep Ultrasound Denoising Using Diffusion Probabilistic Models [5.828784149537374]
Previous denoising methods often remove the speckles, which could be informative for radiologists and also for quantitative ultrasound.
Herein, a method based on the recent Denoising Diffusion Probabilistic Models (DDPM) is proposed.
It iteratively enhances the image quality by eliminating the noise while preserving the speckle texture.
arXiv Detail & Related papers (2023-06-12T21:53:32Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Ultrasound Speckle Suppression and Denoising using MRI-derived
Normalizing Flow Priors [16.741462523436848]
We propose a new unsupervised ultrasound speckle reduction and image denoising method based on maximum-a-posteriori estimation.
The method outperforms other (unsupervised) ultrasound denoising methods (NLM and OBNLM) both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-12-24T17:21:24Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.