Trustworthiness of Legal Considerations for the Use of LLMs in Education
- URL: http://arxiv.org/abs/2508.03771v1
- Date: Tue, 05 Aug 2025 07:44:33 GMT
- Title: Trustworthiness of Legal Considerations for the Use of LLMs in Education
- Authors: Sara Alaswad, Tatiana Kalganova, Wasan Awad,
- Abstract summary: This paper offers a comparative analysis of AI-related regulatory and ethical frameworks across key global regions.<n>It maps how core trustworthiness principles, such as transparency, fairness, accountability, data privacy, and human oversight are embedded in regional legislation and AI governance structures.<n>The paper contributes practical guidance for building legally sound, ethically grounded, and culturally sensitive AI systems in education.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Artificial Intelligence (AI), particularly Large Language Models (LLMs), becomes increasingly embedded in education systems worldwide, ensuring their ethical, legal, and contextually appropriate deployment has become a critical policy concern. This paper offers a comparative analysis of AI-related regulatory and ethical frameworks across key global regions, including the European Union, United Kingdom, United States, China, and Gulf Cooperation Council (GCC) countries. It maps how core trustworthiness principles, such as transparency, fairness, accountability, data privacy, and human oversight are embedded in regional legislation and AI governance structures. Special emphasis is placed on the evolving landscape in the GCC, where countries are rapidly advancing national AI strategies and education-sector innovation. To support this development, the paper introduces a Compliance-Centered AI Governance Framework tailored to the GCC context. This includes a tiered typology and institutional checklist designed to help regulators, educators, and developers align AI adoption with both international norms and local values. By synthesizing global best practices with region-specific challenges, the paper contributes practical guidance for building legally sound, ethically grounded, and culturally sensitive AI systems in education. These insights are intended to inform future regulatory harmonization and promote responsible AI integration across diverse educational environments.
Related papers
- Bottom-Up Perspectives on AI Governance: Insights from User Reviews of AI Products [0.0]
This study adopts a bottom-up approach to explore how governance-relevant themes are expressed in user discourse.<n> Drawing on over 100,000 user reviews of AI products from G2.com, we apply BERTopic to extract latent themes and identify those most semantically related to AI governance.
arXiv Detail & Related papers (2025-05-30T01:33:21Z) - Enterprise Architecture as a Dynamic Capability for Scalable and Sustainable Generative AI adoption: Bridging Innovation and Governance in Large Organisations [55.2480439325792]
Generative Artificial Intelligence is a powerful new technology with the potential to boost innovation and reshape governance in many industries.<n>However, organisations face major challenges in scaling GenAI, including technology complexity, governance gaps and resource misalignments.<n>This study explores how Enterprise Architecture Management can meet the complex requirements of GenAI adoption within large enterprises.
arXiv Detail & Related papers (2025-05-09T07:41:33Z) - AI Governance in the GCC States: A Comparative Analysis of National AI Strategies [0.0]
Gulf Cooperation Council (GCC) states increasingly adopt Artificial Intelligence (AI) to drive economic diversification and enhance services.<n>This paper investigates the evolving AI governance landscape across the six GCC nations, the United Arab Emirates, Saudi Arabia, Qatar, Oman, Bahrain, and Kuwait.<n>Findings highlight a "soft regulation" approach that emphasizes national strategies and ethical principles rather than binding regulations.
arXiv Detail & Related papers (2025-05-04T16:25:52Z) - The Role of Legal Frameworks in Shaping Ethical Artificial Intelligence Use in Corporate Governance [0.0]
This article examines the evolving role of legal frameworks in shaping ethical artificial intelligence (AI) use in corporate governance.<n>It explores key legal and regulatory approaches aimed at promoting transparency, accountability, and fairness in corporate AI applications.
arXiv Detail & Related papers (2025-03-17T14:21:58Z) - Media and responsible AI governance: a game-theoretic and LLM analysis [61.132523071109354]
This paper investigates the interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems.<n>Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes.
arXiv Detail & Related papers (2025-03-12T21:39:38Z) - Compliance of AI Systems [0.0]
This paper systematically examines the compliance of AI systems with relevant legislation, focusing on the EU's AI Act.<n>The analysis highlighted many challenges associated with edge devices, which are increasingly being used to deploy AI applications closer and closer to the data sources.<n>The importance of data set compliance is highlighted as a cornerstone for ensuring the trustworthiness, transparency, and explainability of AI systems.
arXiv Detail & Related papers (2025-03-07T16:53:36Z) - Local Differences, Global Lessons: Insights from Organisation Policies for International Legislation [22.476305606415995]
This paper examines AI policies in two domains, news organisations and universities, to understand how bottom-up governance approaches shape AI usage and oversight.<n>We identify key areas of convergence and divergence in how organisations address risks such as bias, privacy, misinformation, and accountability.<n>We argue that lessons from domain-specific AI policies can contribute to more adaptive and effective AI governance at the global level.
arXiv Detail & Related papers (2025-02-19T15:59:09Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Unpacking the Ethical Value Alignment in Big Models [46.560886177083084]
This paper provides an overview of the risks and challenges associated with big models, surveys existing AI ethics guidelines, and examines the ethical implications arising from the limitations of these models.
We introduce a novel conceptual paradigm for aligning the ethical values of big models and discuss promising research directions for alignment criteria, evaluation, and method.
arXiv Detail & Related papers (2023-10-26T16:45:40Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
Many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc.
In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems.
To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems.
arXiv Detail & Related papers (2021-10-04T03:20:39Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Hacia los Comit\'es de \'Etica en Inteligencia Artificial [68.8204255655161]
It is priority to create the rules and specialized organizations that can oversight the following of such rules.
This work proposes the creation, at the universities, of Ethical Committees or Commissions specialized on Artificial Intelligence.
arXiv Detail & Related papers (2020-02-11T23:48:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.