U-PINet: End-to-End Hierarchical Physics-Informed Learning With Sparse Graph Coupling for 3D EM Scattering Modeling
- URL: http://arxiv.org/abs/2508.03774v1
- Date: Tue, 05 Aug 2025 12:20:42 GMT
- Title: U-PINet: End-to-End Hierarchical Physics-Informed Learning With Sparse Graph Coupling for 3D EM Scattering Modeling
- Authors: Rui Zhu, Yuexing Peng, Peng Wang, George C. Alexandropoulos, Wenbo Wang, Wei Xiang,
- Abstract summary: Electromagnetic (EM) scattering modeling is critical for radar remote sensing.<n>Traditional numerical solvers offer high accuracy, but suffer from scalability issues and substantial computational costs.<n>We propose a U-shaped Physics-Informed Network (U-PINet) to overcome these limitations.
- Score: 28.64166932076228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electromagnetic (EM) scattering modeling is critical for radar remote sensing, however, its inherent complexity introduces significant computational challenges. Traditional numerical solvers offer high accuracy, but suffer from scalability issues and substantial computational costs. Pure data-driven deep learning approaches, while efficient, lack physical constraints embedding during training and require extensive labeled data, limiting their applicability and generalization. To overcome these limitations, we propose a U-shaped Physics-Informed Network (U-PINet), the first fully deep-learning-based, physics-informed hierarchical framework for computational EM designed to ensure physical consistency while maximizing computational efficiency. Motivated by the hierarchical decomposition strategy in EM solvers and the inherent sparsity of local EM coupling, the U-PINet models the decomposition and coupling of near- and far-field interactions through a multiscale processing neural network architecture, while employing a physics-inspired sparse graph representation to efficiently model both self- and mutual- coupling among mesh elements of complex $3$-Dimensional (3D) objects. This principled approach enables end-to-end multiscale EM scattering modeling with improved efficiency, generalization, and physical consistency. Experimental results showcase that the U-PINet accurately predicts surface current distributions, achieving close agreement with traditional solver, while significantly reducing computational time and outperforming conventional deep learning baselines in both accuracy and robustness. Furthermore, our evaluations on radar cross section prediction tasks confirm the feasibility of the U-PINet for downstream EM scattering applications.
Related papers
- OmniFluids: Unified Physics Pre-trained Modeling of Fluid Dynamics [25.066485418709114]
We introduce OmniFluids, a unified physics pre-trained operator learning framework.<n>It integrates physics-only pre-training, coarse-grid operator distillation, and few-shot fine-tuning.<n>It significantly outperforms state-of-the-art AI-driven methods in flow field reconstruction and turbulence statistics accuracy.
arXiv Detail & Related papers (2025-06-12T16:23:02Z) - A Neural Network Architecture Based on Attention Gate Mechanism for 3D Magnetotelluric Forward Modeling [1.5862483908050367]
We propose a novel neural network architecture named MTAGU-Net, which integrates an attention gating mechanism for 3D MT forward modeling.<n>A dual-path attention gating module is designed based on forward response data images and embedded in the skip connections between the encoder and decoder.<n>A synthetic model generation method utilizing 3D Gaussian random field (GRF) accurately replicates the electrical structures of real-world geological scenarios.
arXiv Detail & Related papers (2025-03-14T13:48:25Z) - Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations [49.173541207550485]
Adaptive Meshing By Expert Reconstruction (AMBER) is an imitation learning problem.
AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh.
We experimentally validate AMBER on 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.
arXiv Detail & Related papers (2024-06-20T10:01:22Z) - Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows [3.5707423185282656]
Physics-informed neural networks (PINNs) have gained significant prominence as a powerful tool in the field of scientific computing and simulations.
We propose to combine the power of neural networks with the dynamics imposed by the discretized differential equations.
By discretizing the governing equations, the PINN learns to account for the discontinuities and accurately capture the underlying relationships between inputs and outputs.
arXiv Detail & Related papers (2024-04-04T06:56:32Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Physics-enhanced deep surrogates for partial differential equations [30.731686639510517]
We present a "physics-enhanced deep-surrogate" ("PEDS") approach towards developing fast surrogate models for complex physical systems.
Specifically, a combination of a low-fidelity, explainable physics simulator and a neural network generator is proposed, which is trained end-to-end to globally match the output of an expensive high-fidelity numerical solver.
arXiv Detail & Related papers (2021-11-10T18:43:18Z) - Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning [2.12121796606941]
Full waveform inversion produces high-resolution subsurface models.
FWI with least-squares function suffers from many drawbacks such as the local-minima problem.
Recent works relying on partial differential equations and neural networks show promising performance for two-dimensional FWI.
We propose an unsupervised learning paradigm that integrates wave equation with a discriminate network to accurately estimate the physically consistent models.
arXiv Detail & Related papers (2021-09-23T15:54:40Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.