Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning
- URL: http://arxiv.org/abs/2109.11452v1
- Date: Thu, 23 Sep 2021 15:54:40 GMT
- Title: Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning
- Authors: Fangshu Yang, Jianwei Ma
- Abstract summary: Full waveform inversion produces high-resolution subsurface models.
FWI with least-squares function suffers from many drawbacks such as the local-minima problem.
Recent works relying on partial differential equations and neural networks show promising performance for two-dimensional FWI.
We propose an unsupervised learning paradigm that integrates wave equation with a discriminate network to accurately estimate the physically consistent models.
- Score: 2.12121796606941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Seismic full waveform inversion (FWI) is a powerful geophysical imaging
technique that produces high-resolution subsurface models by iteratively
minimizing the misfit between the simulated and observed seismograms.
Unfortunately, conventional FWI with least-squares function suffers from many
drawbacks such as the local-minima problem and computation of explicit
gradient. It is particularly challenging with the contaminated measurements or
poor starting models. Recent works relying on partial differential equations
and neural networks show promising performance for two-dimensional FWI.
Inspired by the competitive learning of generative adversarial networks, we
proposed an unsupervised learning paradigm that integrates wave equation with a
discriminate network to accurately estimate the physically consistent models in
a distribution sense. Our framework needs no labelled training data nor
pretraining of the network, is flexible to achieve multi-parameters inversion
with minimal user interaction. The proposed method faithfully recovers the
well-known synthetic models that outperforms the classical algorithms.
Furthermore, our work paves the way to sidestep the local-minima issue via
reducing the sensitivity to initial models and noise.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - An Unsupervised Deep Learning Approach for the Wave Equation Inverse
Problem [12.676629870617337]
Full-waveform inversion (FWI) is a powerful geophysical imaging technique that infers high-resolution subsurface physical parameters.
Due to limitations in observation, limited shots or receivers, and random noise, conventional inversion methods are confronted with numerous challenges.
We provide an unsupervised learning approach aimed at accurately reconstructing physical velocity parameters.
arXiv Detail & Related papers (2023-11-08T08:39:33Z) - Deep Networks as Denoising Algorithms: Sample-Efficient Learning of
Diffusion Models in High-Dimensional Graphical Models [22.353510613540564]
We investigate the approximation efficiency of score functions by deep neural networks in generative modeling.
We observe score functions can often be well-approximated in graphical models through variational inference denoising algorithms.
We provide an efficient sample complexity bound for diffusion-based generative modeling when the score function is learned by deep neural networks.
arXiv Detail & Related papers (2023-09-20T15:51:10Z) - Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks? [18.92828441607381]
We show that embeddings induce a model that fits observations well but simultaneously has incorrect dynamical behaviours.
We propose a simple embedding-free alternative based on parametrising two additive vector-field components.
arXiv Detail & Related papers (2023-05-20T12:41:47Z) - Dynamical Hyperspectral Unmixing with Variational Recurrent Neural
Networks [25.051918587650636]
Multitemporal hyperspectral unmixing (MTHU) is a fundamental tool in the analysis of hyperspectral image sequences.
We propose an unsupervised MTHU algorithm based on variational recurrent neural networks.
arXiv Detail & Related papers (2023-03-19T04:51:34Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Implicit Full Waveform Inversion with Deep Neural Representation [91.3755431537592]
We propose the implicit full waveform inversion (IFWI) algorithm using continuously and implicitly defined deep neural representations.
Both theoretical and experimental analyses indicates that, given a random initial model, IFWI is able to converge to the global minimum.
IFWI has a certain degree of robustness and strong generalization ability that are exemplified in the experiments of various 2D geological models.
arXiv Detail & Related papers (2022-09-08T01:54:50Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Self-Regression Learning for Blind Hyperspectral Image Fusion Without
Label [11.291055330647977]
We propose a self-regression learning method that reconstructs hyperspectral image (HSI) and estimate the observation model.
In particular, we adopt an invertible neural network (INN) for restoring the HSI, and two fully-connected networks (FCN) for estimating the observation model.
Our model can outperform the state-of-the-art methods in experiments on both synthetic and real-world dataset.
arXiv Detail & Related papers (2021-03-31T04:48:21Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.