論文の概要: Do GNN-based QEC Decoders Require Classical Knowledge? Evaluating the Efficacy of Knowledge Distillation from MWPM
- arxiv url: http://arxiv.org/abs/2508.03782v1
- Date: Tue, 05 Aug 2025 14:54:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.395241
- Title: Do GNN-based QEC Decoders Require Classical Knowledge? Evaluating the Efficacy of Knowledge Distillation from MWPM
- Title(参考訳): GNNベースのQECデコーダは古典的知識を必要とするか? MWPMによる知識蒸留の有効性の評価
- Authors: Ryota Ikeda,
- Abstract要約: グラフニューラルネットワーク(GNN)は有望なアプローチとして登場したが、そのトレーニング方法論はまだ十分に確立されていない。
ノードの特徴として時間情報を組み込んだグラフ注意ネットワーク(GAT)アーキテクチャに基づく2つのモデルを比較する。
Googleの公開実験データから, 知識蒸留モデルの最終試験精度はベースラインとほぼ同一であったが, トレーニング損失はより緩やかに収束し, トレーニング時間は約5倍に増加した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of decoders in Quantum Error Correction (QEC) is key to realizing practical quantum computers. In recent years, Graph Neural Networks (GNNs) have emerged as a promising approach, but their training methodologies are not yet well-established. It is generally expected that transferring theoretical knowledge from classical algorithms like Minimum Weight Perfect Matching (MWPM) to GNNs, a technique known as knowledge distillation, can effectively improve performance. In this work, we test this hypothesis by rigorously comparing two models based on a Graph Attention Network (GAT) architecture that incorporates temporal information as node features. The first is a purely data-driven model (baseline) trained only on ground-truth labels, while the second incorporates a knowledge distillation loss based on the theoretical error probabilities from MWPM. Using public experimental data from Google, our evaluation reveals that while the final test accuracy of the knowledge distillation model was nearly identical to the baseline, its training loss converged more slowly, and the training time increased by a factor of approximately five. This result suggests that modern GNN architectures possess a high capacity to efficiently learn complex error correlations directly from real hardware data, without guidance from approximate theoretical models.
- Abstract(参考訳): 量子エラー補正(QEC)におけるデコーダの性能は、実用的な量子コンピュータを実現するための鍵となる。
近年、グラフニューラルネットワーク(GNN)が将来性のあるアプローチとして登場しているが、そのトレーニング方法論はまだ十分に確立されていない。
理論知識をMWPM(Minimum Weight Perfect Matching)のような古典的アルゴリズムから,知識蒸留として知られる技術であるGNNに転送することで,効率が向上することが一般的に期待されている。
本研究では,時間情報をノードの特徴として組み込んだグラフ注意ネットワーク(GAT)アーキテクチャに基づく2つのモデルを厳密に比較することによって,この仮説を検証する。
1つは、純粋なデータ駆動モデル(ベースライン)であり、もう1つは、MWPMの理論的誤差確率に基づく知識蒸留損失である。
Googleの公開実験データから, 知識蒸留モデルの最終試験精度はベースラインとほぼ同一であったが, トレーニング損失はより緩やかに収束し, トレーニング時間は約5倍に増加した。
この結果から,現代のGNNアーキテクチャは,近似理論モデルからのガイダンスを伴わずに,実ハードウェアデータから直接,複雑なエラー相関を効率的に学習する能力が高いことが示唆された。
関連論文リスト
- Bridging Classical and Quantum Machine Learning: Knowledge Transfer From Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
本稿では,古典的畳み込みニューラルネットワーク(CNN)から量子ニューラルネットワーク(QNN)へ知識を伝達するための新しい枠組みを提案する。
我々は、MNIST, Fashion MNIST, CIFAR10データセット上の4および8キュービットを持つ2つのパラメタライズド量子回路(PQC)を用いて、広範な実験を行う。
我々の結果は、古典的なディープラーニングと新しい量子コンピューティングをブリッジし、量子マシンインテリジェンスにおいてより強力でリソースを意識したモデルを構築するための、有望なパラダイムを確立します。
論文 参考訳(メタデータ) (2023-11-23T05:06:43Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
FKGC (Few-shot Knowledge Graph completion) は、失明した事実を、無意味な関連のある事実で予測することを目的としている。
既存のFKGC手法はメートル法学習やメタラーニングに基づいており、しばしば分布外や過度に適合する問題に悩まされる。
本稿では,数ショット知識グラフ補完(NP-FKGC)のためのフローベースニューラルプロセスの正規化を提案する。
論文 参考訳(メタデータ) (2023-04-17T11:42:28Z) - Physics Simulation Via Quantum Graph Neural Network [0.0]
量子グラフニューラルネットワーク(QGNN)の2つの実現法を開発し,実装する。
最初のQGNNは、古典的な情報として重ね合わせ状態を直接実装する能力に依存する投機的量子古典的ハイブリッド学習モデルである。
2つ目は量子古典的ハイブリッド学習モデルで、RX$回転ゲートのパラメータを通して直接粒子情報を伝播する。
論文 参考訳(メタデータ) (2023-01-11T20:21:10Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Great Truths are Always Simple: A Rather Simple Knowledge Encoder for
Enhancing the Commonsense Reasoning Capacity of Pre-Trained Models [89.98762327725112]
自然言語における常識推論は、人工知能システムの望ましい能力である。
複雑なコモンセンス推論タスクを解決するための典型的な解決策は、知識対応グラフニューラルネットワーク(GNN)エンコーダで事前訓練された言語モデル(PTM)を強化することである。
有効性にもかかわらず、これらのアプローチは重いアーキテクチャ上に構築されており、外部知識リソースがPTMの推論能力をどのように改善するかを明確に説明できない。
論文 参考訳(メタデータ) (2022-05-04T01:27:36Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
本研究の目的は、コンピュータビジョン2次元オブジェクト分類タスクに使用される最も一般的な機械学習およびディープラーニング技術を分析し比較することである。
まず、視覚語モデルと深部畳み込みニューラルネットワーク(DCNN)の理論的背景を示す。
次に、Bag of Visual Wordsモデル、VGG16 CNN Architectureを実装します。
論文 参考訳(メタデータ) (2022-04-11T11:34:43Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - A Lagrangian Dual-based Theory-guided Deep Neural Network [0.0]
The Lagrangian dual-based TgNN (TgNN-LD) is proposed to improve the effective of TgNN。
実験により、ラグランジアン双対ベースTgNNの優位性が示された。
論文 参考訳(メタデータ) (2020-08-24T02:06:19Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - A Dual-Dimer Method for Training Physics-Constrained Neural Networks
with Minimax Architecture [6.245537312562826]
ミニマックス探索アルゴリズム(PCNN-MM)による物理制約ニューラルネットワーク(PCNN)の訓練
DualDimerと呼ばれる新しいサドルポイントアルゴリズムは、ニューラルネットワークデータの高次サドルポイントを探索するために使用される。
PCNN-MMの収束重みは従来のPCNNよりも高速である。
論文 参考訳(メタデータ) (2020-05-01T21:26:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。