論文の概要: Active Learning and Transfer Learning for Anomaly Detection in Time-Series Data
- arxiv url: http://arxiv.org/abs/2508.03921v1
- Date: Tue, 05 Aug 2025 21:30:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.450362
- Title: Active Learning and Transfer Learning for Anomaly Detection in Time-Series Data
- Title(参考訳): 時系列データにおける異常検出のための能動的学習と伝達学習
- Authors: John D. Kelleher, Matthew Nicholson, Rahul Agrahari, Clare Conran,
- Abstract要約: 本稿では,ドメイン間時系列データの異常検出における能動学習と移動学習の併用の有効性について検討する。
アクティブラーニングを用いたトレーニングセットに新たなサンプルを追加することでモデルの性能が向上することがわかったが、一般的には、改善の速度は文献が示唆する結果よりも遅いことが判明した。
- 参考スコア(独自算出の注目度): 1.3271317049666105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper examines the effectiveness of combining active learning and transfer learning for anomaly detection in cross-domain time-series data. Our results indicate that there is an interaction between clustering and active learning and in general the best performance is achieved using a single cluster (in other words when clustering is not applied). Also, we find that adding new samples to the training set using active learning does improve model performance but that in general, the rate of improvement is slower than the results reported in the literature suggest. We attribute this difference to an improved experimental design where distinct data samples are used for the sampling and testing pools. Finally, we assess the ceiling performance of transfer learning in combination with active learning across several datasets and find that performance does initially improve but eventually begins to tail off as more target points are selected for inclusion in training. This tail-off in performance may indicate that the active learning process is doing a good job of sequencing data points for selection, pushing the less useful points towards the end of the selection process and that this tail-off occurs when these less useful points are eventually added. Taken together our results indicate that active learning is effective but that the improvement in model performance follows a linear flat function concerning the number of points selected and labelled.
- Abstract(参考訳): 本稿では,ドメイン間時系列データの異常検出における能動学習と移動学習の併用の有効性について検討する。
以上の結果から,クラスタリングとアクティブラーニングの間には相互作用があることが示唆された。
また,アクティブラーニングを用いたトレーニングセットに新たなサンプルを追加することで,モデルの性能が向上することがわかった。
この違いは、サンプルプールとテストプールに異なるデータサンプルが使用される、改良された実験設計によるものである。
最後に,複数のデータセットにまたがるアクティブラーニングと組み合わせて,トランスファーラーニングの天井性能を評価する。
このショートオフ性能は、アクティブな学習プロセスが、選択のためにデータポイントをシークエンシングし、あまり役に立たないポイントを選択プロセスの終了に向かって押し付け、これらのあまり役に立たないポイントが最終的に追加されるときに、このテールオフが発生することを示唆している。
その結果、アクティブラーニングは有効であるが、モデル性能の向上は、選択された点数とラベル付けされた点数に関する線形平坦関数に従うことが示唆された。
関連論文リスト
- Data curation via joint example selection further accelerates multimodal learning [3.329535792151987]
サンプルを個別に選択するよりも,データのバッチを共同で選択することが学習に有効であることを示す。
このようなバッチを選択するための単純かつトラクタブルなアルゴリズムを導出し、個別に優先順位付けされたデータポイントを超えてトレーニングを著しく加速する。
論文 参考訳(メタデータ) (2024-06-25T16:52:37Z) - Exploring Learning Complexity for Efficient Downstream Dataset Pruning [8.990878450631596]
既存のデータセットプルーニングメソッドでは、データセット全体のトレーニングが必要になる。
本稿では、DLC(Distorting-based Learning Complexity)という、単純で、新規で、トレーニング不要な難易度スコアを提案する。
本手法は,より高速に学習できるサンプルを少ないパラメータで学習できるという観察結果に動機付けられている。
論文 参考訳(メタデータ) (2024-02-08T02:29:33Z) - Fast Classification with Sequential Feature Selection in Test Phase [1.1470070927586016]
本稿では,分類のための能動的特徴獲得のための新しいアプローチを提案する。
最適な予測性能を達成するために、最も情報性の高い機能のサブセットを順次選択する作業である。
提案手法では,既存の手法に比べてはるかに高速で効率の良い新しい遅延モデルが提案されている。
論文 参考訳(メタデータ) (2023-06-25T21:31:46Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
時系列表現学習は、時間的ダイナミクスとスパースラベルを持つデータから表現を抽出することができる。
自己教師型タスクの利点を組み合わせた時系列表現学習手法を提案する。
本稿では,時系列分類,予測,異常検出という3つのダウンストリームタスクの枠組みについて検討する。
論文 参考訳(メタデータ) (2023-03-02T07:44:06Z) - Revisiting Deep Active Learning for Semantic Segmentation [37.3546941940388]
本研究では,本論文で提案する各種能動的学習目標の性能について,データ分布が決定的であることを示す。
半教師付き学習とアクティブラーニングの統合は,2つの目標が整列した際の性能向上を実証する。
論文 参考訳(メタデータ) (2023-02-08T14:23:37Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
ラベルのないサンプルが高損失を伴っていると信じられている場合に,データアノテーションのオラクルに問い合わせる,新しいディープラーニングアプローチを提案する。
本手法は,画像分類やセマンティックセグメンテーションタスクにおける最先端の能動学習手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-12-20T19:29:37Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
本稿では,局所感度と硬度認識獲得機能を備えたラベル付きサンプルの検索を提案する。
本手法は,様々な分類タスクにおいてよく用いられるアクティブラーニング戦略よりも一貫した利得が得られる。
論文 参考訳(メタデータ) (2022-05-10T15:39:11Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Mind Your Outliers! Investigating the Negative Impact of Outliers on
Active Learning for Visual Question Answering [71.15403434929915]
視覚的質問応答のタスクにおいて、5つのモデルと4つのデータセットにまたがって、多種多様な能動的学習アプローチがランダム選択を上回りません。
アクティブな学習手法が好まれるが、モデルは学習に失敗する例の集まりである。
本研究では,アクティブ学習プールにおける集団外乱の減少に伴い,アクティブ学習サンプル効率が著しく向上することを示す。
論文 参考訳(メタデータ) (2021-07-06T00:52:11Z) - Data Shapley Valuation for Efficient Batch Active Learning [21.76249748709411]
Active Data Shapley(ADS)は、バッチアクティブラーニングのためのフィルタリングレイヤーです。
ADSは、ラベルのないデータのプールが現実世界の異常を示す場合に特に効果的であることを示す。
論文 参考訳(メタデータ) (2021-04-16T18:53:42Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z) - Improving Multi-Turn Response Selection Models with Complementary
Last-Utterance Selection by Instance Weighting [84.9716460244444]
我々は、データリソース自体の根底にある相関を利用して、異なる種類の監視信号を導出することを検討する。
2つの公開データセットで広範な実験を行い、両方のデータセットで大幅に改善した。
論文 参考訳(メタデータ) (2020-02-18T06:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。