論文の概要: Reputation-based partition scheme for IoT security
- arxiv url: http://arxiv.org/abs/2508.03981v1
- Date: Wed, 06 Aug 2025 00:27:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.478538
- Title: Reputation-based partition scheme for IoT security
- Title(参考訳): IoTセキュリティのためのレピュテーションに基づくパーティションスキーム
- Authors: Zhikui Chen, Muhammad Zeeshan Haider, Naiwen Luo, Shuo Yu, Xu Yuan, Yaochen Zhang, Tayyaba Noreen,
- Abstract要約: クラウドセンシングは、データ駆動アプリケーションにおいて重要な役割を果たす、新たなデータ集約パラダイムである。
プラットフォームセキュリティやプライバシ保護といったクラウドセンシングの開発には,いくつかの重要な問題がある。
本稿では,評価に基づく効果的な分割方式(RSPC)を提案する。
- 参考スコア(独自算出の注目度): 21.32565499244062
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the popularity of smart terminals, such as the Internet of Things, crowdsensing is an emerging data aggregation paradigm, which plays a pivotal role in data-driven applications. There are some key issues in the development of crowdsensing such as platform security and privacy protection. As the crowdsensing is usually managed by a centralized platform, centralized management will bring various security vulnerabilities and scalability issues. To solve these issues, an effective reputation-based partition scheme (RSPC) is proposed in this article. The partition scheme calculates the optimal partition size by combining the node reputation value and divides the node into several disjoint partitions according to the node reputation value. By selecting the appropriate partition size, RSPC provides a mechanism to ensure that each partition is valid, as long as themaximum permissible threshold for the failed node is observed. At the same time, the RSPC reorganizes the network periodically to avoid partition attacks. In addition, for cross-partition transactions, this paper innovatively proposes a four-stage confirmation protocol to ensure the efficient and safe completion of cross-partition transactions. Finally, experiments show that RSPC improves scalability, low latency, and high throughput for crowdsensing.
- Abstract(参考訳): モノのインターネット(Internet of Things)などのスマート端末の普及に伴い、クラウドセンシングは、データ駆動アプリケーションにおいて重要な役割を果たす、新たなデータ集約パラダイムである。
プラットフォームセキュリティやプライバシ保護といったクラウドセンシングの開発には,いくつかの重要な問題がある。
クラウドセンシングは通常、集中型プラットフォームによって管理されるため、集中型管理はさまざまなセキュリティ脆弱性とスケーラビリティの問題をもたらす。
これらの問題を解決するために,評価に基づく効果的な分割方式(RSPC)を提案する。
分割スキームは、ノード評価値を組み合わせて最適なパーティションサイズを算出し、ノード評価値に応じて、ノードを複数の不整合パーティションに分割する。
適切なパーティションサイズを選択することで、RSPCは、障害ノードの最大許容閾値が観測される限り、各パーティションが有効であることを保証するメカニズムを提供する。
同時に、RSPCは分割攻撃を避けるために定期的にネットワークを再編成する。
また,クロスパーティショントランザクションにおいて,クロスパーティショントランザクションの効率的かつ安全な完了を保証するための4段階認証プロトコルを革新的に提案する。
最後に、RSPCは、クラウドセンシングのためのスケーラビリティ、低レイテンシ、高スループットを改善していることを示す。
関連論文リスト
- PRISM: Distributed Inference for Foundation Models at Edge [73.54372283220444]
PRISMは、エッジデバイス上での分散トランスフォーマー推論のための通信効率と計算アウェア戦略である。
ViT,BERT,GPT-2のPRISMを多種多様なデータセットで評価した。
論文 参考訳(メタデータ) (2025-07-16T11:25:03Z) - FRAG: Toward Federated Vector Database Management for Collaborative and Secure Retrieval-Augmented Generation [1.3824176915623292]
本稿では,検索集約システム (RAG) のニーズの増大に対応する新しいデータベース管理パラダイムである textitFederated Retrieval-Augmented Generation (FRAG) を紹介する。
FRAGは、ANN(Approximate $k$-Nearest Neighbor)による、暗号化されたクエリベクタと分散ベクトルデータベースに格納された暗号化データ検索を相互に行うことができる。
論文 参考訳(メタデータ) (2024-10-17T06:57:29Z) - Federated Instruction Tuning of LLMs with Domain Coverage Augmentation [87.49293964617128]
Federated Domain-specific Instruction Tuning (FedDIT)は、限られたクロスクライアントなプライベートデータと、命令拡張のさまざまな戦略を利用する。
我々は,欲求のあるクライアントセンターの選択と検索に基づく拡張を通じて,ドメインカバレッジを最適化するFedDCAを提案する。
クライアント側の計算効率とシステムのスケーラビリティのために、FedDCAの変種であるFedDCA$*$はサーバ側の特徴アライメントを備えた異種エンコーダを利用する。
論文 参考訳(メタデータ) (2024-09-30T09:34:31Z) - BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS [16.239598954752594]
カーネルの区画化は、最小特権原理に従う有望なアプローチである。
本稿では,セキュアでスケーラブルで効率的なカーネルコンパートナライズ技術であるBULKHEADを提案する。
ロード可能なカーネルモジュールを分割するプロトタイプシステムをLinux v6.1で実装する。
論文 参考訳(メタデータ) (2024-09-15T04:11:26Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
電力システムの負荷データは、住宅ユーザの日常のルーチンを不注意に明らかにし、彼らの財産のセキュリティにリスクを及ぼす可能性がある。
我々はマルコフスイッチ方式の分散学習フレームワークを導入し、その収束は厳密な理論的解析によって実証される。
実世界の電力系統負荷データを用いたケーススタディにより,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2024-02-02T16:39:08Z) - ByzSecAgg: A Byzantine-Resistant Secure Aggregation Scheme for Federated Learning Based on Coded Computing and Vector Commitment [61.540831911168226]
ByzSecAggは、フェデレートラーニングのための効率的なセキュアアグリゲーションスキームである。
ByzSecAggはビザンツの攻撃やプライバシーの漏洩に耐性がある。
論文 参考訳(メタデータ) (2023-02-20T11:15:18Z) - ScionFL: Efficient and Robust Secure Quantized Aggregation [36.668162197302365]
我々は,フェデレートラーニングのための最初のセキュアアグリゲーションフレームワークであるScionFLを紹介する。
量子化された入力で効率的に動作し、同時に悪意のあるクライアントに対して堅牢性を提供する。
クライアントのオーバーヘッドがなく、サーバのオーバーヘッドも緩やかなため、標準的なFLベンチマークに匹敵する精度が得られます。
論文 参考訳(メタデータ) (2022-10-13T21:46:55Z) - Receptive Field-based Segmentation for Distributed CNN Inference
Acceleration in Collaborative Edge Computing [93.67044879636093]
協調エッジコンピューティングネットワークにおける分散畳み込みニューラルネットワーク(CNN)を用いた推論高速化について検討する。
我々は,CNNモデルを複数の畳み込み層に分割するために,融合層並列化を用いた新しい協調エッジコンピューティングを提案する。
論文 参考訳(メタデータ) (2022-07-22T18:38:11Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Sharing classical secrets with continuous-variable entanglement:
Composable security and network coding advantage [0.913755431537592]
量子通信のためのポイント・ツー・ポイントプロトコルに対して,マルチパーティ・エンタングルド・リソースが真に有利であることを示す。
これは、量子通信のためのポイント・ツー・ポイントプロトコルよりも真に有利な、マルチパーティ・エンタングルド・リソースの最初の具体的な例である。
論文 参考訳(メタデータ) (2021-04-21T17:37:28Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
パーティショニングエッジ学習(PARTEL)は、無線ネットワークにおいてよく知られた分散学習手法であるパラメータサーバトレーニングを実装している。
本稿では、いくつかの補助変数を導入してParticleELを用いてトレーニングできるディープニューラルネットワーク(DNN)モデルについて考察する。
論文 参考訳(メタデータ) (2020-10-08T15:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。