論文の概要: FRAG: Toward Federated Vector Database Management for Collaborative and Secure Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2410.13272v1
- Date: Thu, 17 Oct 2024 06:57:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:36.793396
- Title: FRAG: Toward Federated Vector Database Management for Collaborative and Secure Retrieval-Augmented Generation
- Title(参考訳): FRAG:フェデレーションベクターデータベース管理をめざして
- Authors: Dongfang Zhao,
- Abstract要約: 本稿では,検索集約システム (RAG) のニーズの増大に対応する新しいデータベース管理パラダイムである textitFederated Retrieval-Augmented Generation (FRAG) を紹介する。
FRAGは、ANN(Approximate $k$-Nearest Neighbor)による、暗号化されたクエリベクタと分散ベクトルデータベースに格納された暗号化データ検索を相互に行うことができる。
- 参考スコア(独自算出の注目度): 1.3824176915623292
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces \textit{Federated Retrieval-Augmented Generation (FRAG)}, a novel database management paradigm tailored for the growing needs of retrieval-augmented generation (RAG) systems, which are increasingly powered by large-language models (LLMs). FRAG enables mutually-distrusted parties to collaboratively perform Approximate $k$-Nearest Neighbor (ANN) searches on encrypted query vectors and encrypted data stored in distributed vector databases, all while ensuring that no party can gain any knowledge about the queries or data of others. Achieving this paradigm presents two key challenges: (i) ensuring strong security guarantees, such as Indistinguishability under Chosen-Plaintext Attack (IND-CPA), under practical assumptions (e.g., we avoid overly optimistic assumptions like non-collusion among parties); and (ii) maintaining performance overheads comparable to traditional, non-federated RAG systems. To address these challenges, FRAG employs a single-key homomorphic encryption protocol that simplifies key management across mutually-distrusted parties. Additionally, FRAG introduces a \textit{multiplicative caching} technique to efficiently encrypt floating-point numbers, significantly improving computational performance in large-scale federated environments. We provide a rigorous security proof using standard cryptographic reductions and demonstrate the practical scalability and efficiency of FRAG through extensive experiments on both benchmark and real-world datasets.
- Abstract(参考訳): 本稿では,大規模言語モデル (LLMs) を駆使した検索強化生成システム (RAG) のニーズの増大に配慮した,新しいデータベース管理パラダイムである FRAG (textit{Federated Retrieval-Augmented Generation) を紹介する。
FRAGは、ANN(Approximate $k$-Nearest Neighbor)による、暗号化されたクエリベクトルと分散ベクターデータベースに格納された暗号化データに関する検索を、相互に信頼できない当事者が共同で行うことを可能にする。
このパラダイムを達成するには2つの大きな課題があります。
一 事実上の前提(例えば、当事者間の非協力のような過度に楽観的な前提を避けること)の下で、特に、朝鮮戦争における不特定性等の強力なセキュリティ保証を確保すること。
(II)従来の非フェデレーションRAGシステムに匹敵する性能のオーバーヘッドを維持すること。
これらの課題に対処するため、FRAGは、相互に信頼できない当事者間の鍵管理を単純化するシングルキーの同型暗号化プロトコルを採用している。
さらに、FRAGは浮動小数点数を効率よく暗号化するために \textit{multiplicative cache} 技術を導入し、大規模なフェデレーション環境での計算性能を大幅に向上させた。
我々は,標準的な暗号リダクションを用いた厳密なセキュリティ証明を提供し,ベンチマークおよび実世界のデータセットに関する広範な実験を通じて,FRAGの実用的スケーラビリティと効率を実証する。
関連論文リスト
- Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
我々はFedE4RAG(Federated Retrieval-Augmented Generation)と呼ばれる新しいフレームワークを提案する。
FedE4RAGはクライアント側RAG検索モデルの協調トレーニングを容易にする。
モデルパラメータの保護にフェデレート学習の準同型暗号化を適用する。
論文 参考訳(メタデータ) (2025-04-27T04:26:02Z) - Constrained Auto-Regressive Decoding Constrains Generative Retrieval [71.71161220261655]
ジェネレーティブ検索は、従来の検索インデックスデータ構造を1つの大規模ニューラルネットワークに置き換えようとしている。
本稿では,制約とビームサーチという2つの本質的な視点から,制約付き自己回帰生成の固有の制約について検討する。
論文 参考訳(メタデータ) (2025-04-14T06:54:49Z) - MES-RAG: Bringing Multi-modal, Entity-Storage, and Secure Enhancements to RAG [65.0423152595537]
本稿では,エンティティ固有のクエリ処理を強化し,正確でセキュアで一貫した応答を提供するMES-RAGを提案する。
MES-RAGは、データアクセスの前に保護を適用してシステムの整合性を確保するための積極的なセキュリティ対策を導入している。
実験の結果,MES-RAGは精度とリコールの両方を著しく改善し,質問応答の安全性と有用性を向上する効果が示された。
論文 参考訳(メタデータ) (2025-03-17T08:09:42Z) - TrustRAG: Enhancing Robustness and Trustworthiness in RAG [31.231916859341865]
TrustRAGは、世代ごとに取得される前に、妥協されたコンテンツと無関係なコンテンツを体系的にフィルタリングするフレームワークである。
TrustRAGは、既存のアプローチと比較して、検索精度、効率、攻撃抵抗を大幅に改善している。
論文 参考訳(メタデータ) (2025-01-01T15:57:34Z) - Hades: Homomorphic Augmented Decryption for Efficient Symbol-comparison -- A Database's Perspective [1.3824176915623292]
本稿では,暗号化データの効率的かつセキュアな比較を可能にする新しい暗号フレームワークであるHADESを紹介する。
Ring Learning with Errors (RLWE)問題に基づいて、HADESはCPAセキュリティを提供し、周波数分析攻撃を軽減するために摂動認識暗号化を組み込んでいる。
論文 参考訳(メタデータ) (2024-12-28T02:47:14Z) - C-FedRAG: A Confidential Federated Retrieval-Augmented Generation System [7.385458207094507]
我々は、FedRAG(Federated Retrieval Augmented Generation)をセキュアにするためのソリューションとして、CC(Confidential Computing)技術を紹介する。
提案するConfidential FedRAGシステム(C-FedRAG)は、コンテキスト機密性を確保することにより、分散化されたデータプロバイダのネットワークをまたいだRAGのセキュアな接続とスケーリングを可能にする。
論文 参考訳(メタデータ) (2024-12-17T18:42:21Z) - HOPE: Homomorphic Order-Preserving Encryption for Outsourced Databases -- A Stateless Approach [1.1701842638497677]
Homomorphic OPE(Homomorphic OPE)は、クライアント側のストレージを排除し、クエリ実行中に追加のクライアントサーバ間のインタラクションを回避する新しいOPEスキームである。
我々は、広く受け入れられているIND-OCPAモデルの下で、HOPEの正式な暗号解析を行い、その安全性を証明した。
論文 参考訳(メタデータ) (2024-11-26T00:38:46Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - Is My Data in Your Retrieval Database? Membership Inference Attacks Against Retrieval Augmented Generation [0.9217021281095907]
本稿では,RAGシステムに対して,メンバーシップ推論攻撃(MIA)を行うための効率的かつ使いやすい手法を提案する。
2つのベンチマークデータセットと複数の生成モデルを用いて攻撃の有効性を示す。
本研究は,RAGシステムにおけるセキュリティ対策の実施の重要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-05-30T19:46:36Z) - Federated Recommendation via Hybrid Retrieval Augmented Generation [16.228589300933262]
Federated Recommendation (FR)は、プライバシ保護のレコメンデーションを可能にする。
推薦者としての大きな言語モデル(LLM)は、様々なレコメンデーションシナリオで有効であることが証明されている。
GPT-FedRecは,ChatGPTと新しいハイブリッド検索拡張生成(RAG)機構を利用した,連合型レコメンデーションフレームワークである。
論文 参考訳(メタデータ) (2024-03-07T06:38:41Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
電力システムの負荷データは、住宅ユーザの日常のルーチンを不注意に明らかにし、彼らの財産のセキュリティにリスクを及ぼす可能性がある。
我々はマルコフスイッチ方式の分散学習フレームワークを導入し、その収束は厳密な理論的解析によって実証される。
実世界の電力系統負荷データを用いたケーススタディにより,提案アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2024-02-02T16:39:08Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - ScionFL: Efficient and Robust Secure Quantized Aggregation [36.668162197302365]
我々は,フェデレートラーニングのための最初のセキュアアグリゲーションフレームワークであるScionFLを紹介する。
量子化された入力で効率的に動作し、同時に悪意のあるクライアントに対して堅牢性を提供する。
クライアントのオーバーヘッドがなく、サーバのオーバーヘッドも緩やかなため、標準的なFLベンチマークに匹敵する精度が得られます。
論文 参考訳(メタデータ) (2022-10-13T21:46:55Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
メタクラスタリング学習(MCL)と呼ばれる「大規模タスクのための小さなデータ」パラダイムを提案する。
MCLは、第1フェーズのトレーニングのためにコンピューティングを節約するためにクラスタリングを介して、未ラベルデータのサブセットを擬似ラベル付けするのみである。
提案手法は計算コストを大幅に削減すると同時に,従来よりも優れた性能を実現している。
論文 参考訳(メタデータ) (2021-11-19T04:10:18Z) - CREPO: An Open Repository to Benchmark Credal Network Algorithms [78.79752265884109]
クレダルネットワークは、確率質量関数の集合であるクレダルに基づく不正確な確率的グラフィカルモデルである。
CREMAと呼ばれるJavaライブラリが最近リリースされ、クレダルネットワークをモデル化し、処理し、クエリする。
我々は,これらのモデル上での推論タスクの正確な結果とともに,合成クレダルネットワークのオープンリポジトリであるcrrepoを提案する。
論文 参考訳(メタデータ) (2021-05-10T07:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。