論文の概要: SVC 2025: the First Multimodal Deception Detection Challenge
- arxiv url: http://arxiv.org/abs/2508.04129v1
- Date: Wed, 06 Aug 2025 06:56:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.575533
- Title: SVC 2025: the First Multimodal Deception Detection Challenge
- Title(参考訳): SVC 2025: 初のマルチモーダル・デシージャ検出チャレンジ
- Authors: Xun Lin, Xiaobao Guo, Taorui Wang, Yingjie Ma, Jiajian Huang, Jiayu Zhang, Junzhe Cao, Zitong Yu,
- Abstract要約: SVC 2025 Multimodal Deception Detection Challengeは、音声・視覚的偽装検出におけるクロスドメインの一般化を評価するために設計された新しいベンチマークである。
我々は,より適応し,説明し,実践的に展開可能な偽造検知システムの開発を促進することを目的としている。
- 参考スコア(独自算出の注目度): 16.070848946361696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deception detection is a critical task in real-world applications such as security screening, fraud prevention, and credibility assessment. While deep learning methods have shown promise in surpassing human-level performance, their effectiveness often depends on the availability of high-quality and diverse deception samples. Existing research predominantly focuses on single-domain scenarios, overlooking the significant performance degradation caused by domain shifts. To address this gap, we present the SVC 2025 Multimodal Deception Detection Challenge, a new benchmark designed to evaluate cross-domain generalization in audio-visual deception detection. Participants are required to develop models that not only perform well within individual domains but also generalize across multiple heterogeneous datasets. By leveraging multimodal data, including audio, video, and text, this challenge encourages the design of models capable of capturing subtle and implicit deceptive cues. Through this benchmark, we aim to foster the development of more adaptable, explainable, and practically deployable deception detection systems, advancing the broader field of multimodal learning. By the conclusion of the workshop competition, a total of 21 teams had submitted their final results. https://sites.google.com/view/svc-mm25 for more information.
- Abstract(参考訳): 偽造検出は、セキュリティスクリーニング、不正防止、信頼性評価といった現実世界のアプリケーションにおいて重要なタスクである。
深層学習手法は人間レベルの性能を上回る可能性を示してきたが、その効果は高品質で多様な偽装サンプルが利用できることに依存していることが多い。
既存の研究は主に単一ドメインのシナリオに焦点を当てており、ドメインシフトによる大幅なパフォーマンス低下を見越している。
このギャップに対処するため,音声・視覚的誤認検出において,クロスドメインの一般化を評価するために設計された新しいベンチマークであるSVC 2025 Multimodal Deception Detection Challengeを提示する。
参加者は、個々のドメイン内でうまく機能するだけでなく、複数の異種データセットをまたいで一般化するモデルを開発する必要がある。
音声、ビデオ、テキストを含むマルチモーダルデータを活用することで、この課題は微妙で暗黙の欺く手がかりを捉えることができるモデルの設計を促進する。
本ベンチマークでは,より適応性が高く,説明性が高く,実際に展開可能な偽装検出システムの開発を推進し,マルチモーダル学習の幅広い分野を推し進めることを目的としている。
ワークショップ・コンペティションの終了までに、21のチームが最終結果を提出した。
詳細については、https://sites.google.com/view/svc-mm25を参照。
関連論文リスト
- Adaptive Meta-Learning for Robust Deepfake Detection: A Multi-Agent Framework to Data Drift and Model Generalization [6.589206192038365]
本稿では,タスク固有適応型サンプル合成と整合性正規化を用いた対角的メタ学習アルゴリズムを提案する。
これにより、モデルの堅牢性と一般化の両方が促進される。
実験結果は、モデルが様々なデータセットにわたって一貫した性能を示し、比較したモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-11-12T19:55:07Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerの総合的な視覚異常検出ベンチマークを提案する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - From CNNs to Transformers in Multimodal Human Action Recognition: A Survey [23.674123304219822]
人間の行動認識はコンピュータビジョンにおいて最も広く研究されている研究問題の1つである。
近年の研究では、マルチモーダルデータを用いてこの問題に対処することで性能が向上することが示されている。
視覚モデリングにおけるトランスフォーマーの最近の増加は、アクション認識タスクのパラダイムシフトを引き起こしている。
論文 参考訳(メタデータ) (2024-05-22T02:11:18Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Wild Face Anti-Spoofing Challenge 2023: Benchmark and Results [73.98594459933008]
顔認証システム(FAS)は、顔認識システムの完全性を保護するための重要なメカニズムである。
この制限は、公開可能なFASデータセットの不足と多様性の欠如に起因する可能性がある。
制約のない環境で収集された大規模で多様なFASデータセットであるWild Face Anti-Spoofingデータセットを紹介した。
論文 参考訳(メタデータ) (2023-04-12T10:29:42Z) - Universal Object Detection with Large Vision Model [79.06618136217142]
本研究は,大規模多領域普遍物体検出問題に焦点をあてる。
これらの課題に対処するために,ラベル処理,階層型設計,資源効率のよいモデルトレーニングを提案する。
本手法は,ロバスト・ビジョン・チャレンジ2022のオブジェクト検出トラックにおいて,優れた2位の地位を確保した。
論文 参考訳(メタデータ) (2022-12-19T12:40:13Z) - Deep Multimodal Fusion for Generalizable Person Re-identification [15.250738959921872]
DMF(ディープ・マルチモーダル・フュージョン)は、個人再識別タスクの一般的なシナリオのためのディープ・マルチモーダル・フュージョン・ネットワークである。
事前学習段階における特徴表現学習を支援するために、リッチな意味知識が導入される。
実世界の分散アライメントのための事前訓練されたモデルを微調整するために、現実的なデータセットが採用されている。
論文 参考訳(メタデータ) (2022-11-02T07:42:48Z) - A Comprehensive Review of Trends, Applications and Challenges In
Out-of-Distribution Detection [0.76146285961466]
アウト・オブ・ディストリビューション・データ・サブセットの検出とより包括的な一般化の実現に焦点をあてた研究分野が誕生した。
多くのディープラーニングベースのモデルは、ベンチマークデータセットでほぼ完璧な結果を得たため、これらのモデルの信頼性と信頼性を評価する必要性は、これまで以上に強く感じられる。
本稿では,本分野における70以上の論文のレビューに加えて,今後の研究の課題と方向性を提示するとともに,データシフトの多種多様さを統一的に把握し,より一般化するためのソリューションを提案する。
論文 参考訳(メタデータ) (2022-09-26T18:13:14Z) - The Multimodal Sentiment Analysis in Car Reviews (MuSe-CaR) Dataset:
Collection, Insights and Improvements [14.707930573950787]
この種のマルチモーダルデータセットの1つである MuSe-CaR について述べる。
このデータは、最近第1回マルチモーダルセンチメント分析チャレンジのテストベッドとして公開された。
論文 参考訳(メタデータ) (2021-01-15T10:40:37Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
マルチデータセット特徴一般化ネットワーク(MMFA-AAE)を提案する。
複数のラベル付きデータセットから普遍的なドメイン不変の特徴表現を学習し、それを見えないカメラシステムに一般化することができる。
また、最先端の教師付き手法や教師なしのドメイン適応手法を大きなマージンで超えている。
論文 参考訳(メタデータ) (2020-11-25T08:03:15Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。