Benefit from Rich: Tackling Search Interaction Sparsity in Search Enhanced Recommendation
- URL: http://arxiv.org/abs/2508.04145v1
- Date: Wed, 06 Aug 2025 07:16:40 GMT
- Title: Benefit from Rich: Tackling Search Interaction Sparsity in Search Enhanced Recommendation
- Authors: Teng Shi, Weijie Yu, Xiao Zhang, Ming He, Jianping Fan, Jun Xu,
- Abstract summary: We propose GSERec, a method that utilize message passing on the User-Code Graphs to alleviate data sparsity in Search-Enhanced Recommendation.<n>Experiments on three real-world datasets show that GSERec consistently outperforms baselines, especially for users with sparse search behaviors.
- Score: 10.646120456912099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modern online platforms, search and recommendation (S&R) often coexist, offering opportunities for performance improvement through search-enhanced approaches. Existing studies show that incorporating search signals boosts recommendation performance. However, the effectiveness of these methods relies heavily on rich search interactions. They primarily benefit a small subset of users with abundant search behavior, while offering limited improvements for the majority of users who exhibit only sparse search activity. To address the problem of sparse search data in search-enhanced recommendation, we face two key challenges: (1) how to learn useful search features for users with sparse search interactions, and (2) how to design effective training objectives under sparse conditions. Our idea is to leverage the features of users with rich search interactions to enhance those of users with sparse search interactions. Based on this idea, we propose GSERec, a method that utilizes message passing on the User-Code Graphs to alleviate data sparsity in Search-Enhanced Recommendation. Specifically, we utilize Large Language Models (LLMs) with vector quantization to generate discrete codes, which connect similar users and thereby construct the graph. Through message passing on this graph, embeddings of users with rich search data are propagated to enhance the embeddings of users with sparse interactions. To further ensure that the message passing captures meaningful information from truly similar users, we introduce a contrastive loss to better model user similarities. The enhanced user representations are then integrated into downstream search-enhanced recommendation models. Experiments on three real-world datasets show that GSERec consistently outperforms baselines, especially for users with sparse search behaviors.
Related papers
- Unifying Generative and Dense Retrieval for Sequential Recommendation [37.402860622707244]
We propose LIGER, a hybrid model that combines the strengths of sequential dense retrieval and generative retrieval.<n> LIGER integrates sequential dense retrieval into generative retrieval, mitigating performance differences and enhancing cold-start item recommendation.<n>This hybrid approach provides insights into the trade-offs between these approaches and demonstrates improvements in efficiency and effectiveness for recommendation systems in small-scale benchmarks.
arXiv Detail & Related papers (2024-11-27T23:36:59Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
'LADR' (Lexically-Accelerated Dense Retrieval) is a simple-yet-effective approach that improves the efficiency of existing dense retrieval models.
LADR consistently achieves both precision and recall that are on par with an exhaustive search on standard benchmarks.
arXiv Detail & Related papers (2023-07-31T15:44:26Z) - When Search Meets Recommendation: Learning Disentangled Search
Representation for Recommendation [56.98380787425388]
We propose a search-Enhanced framework for the Sequential Recommendation (SESRec)
SESRec disentangling similar and dissimilar representations within S&R behaviors.
Experiments on both industrial and public datasets demonstrate that SESRec consistently outperforms state-of-the-art models.
arXiv Detail & Related papers (2023-05-18T09:04:50Z) - Actively Discovering New Slots for Task-oriented Conversation [19.815466126158785]
We propose a general new slot task in an information extraction fashion to realize human-in-the-loop learning.
We leverage existing language tools to extract value candidates where the corresponding labels are leveraged as weak supervision signals.
We conduct extensive experiments on several public datasets and compare with a bunch of competitive baselines to demonstrate our method.
arXiv Detail & Related papers (2023-05-06T13:33:33Z) - Graph Collaborative Signals Denoising and Augmentation for
Recommendation [75.25320844036574]
We propose a new graph adjacency matrix that incorporates user-user and item-item correlations.
We show that the inclusion of user-user and item-item correlations can improve recommendations for users with both abundant and insufficient interactions.
arXiv Detail & Related papers (2023-04-06T19:43:37Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Approximate Nearest Neighbor Search under Neural Similarity Metric for
Large-Scale Recommendation [20.42993976179691]
We propose a novel method to extend ANN search to arbitrary matching functions.
Our main idea is to perform a greedy walk with a matching function in a similarity graph constructed from all items.
The proposed method has been fully deployed in the Taobao display advertising platform and brings a considerable advertising revenue increase.
arXiv Detail & Related papers (2022-02-14T07:55:57Z) - RETE: Retrieval-Enhanced Temporal Event Forecasting on Unified Query
Product Evolutionary Graph [18.826901341496143]
Temporal event forecasting is a new user behavior prediction task in a unified query product evolutionary graph.
We propose a novel RetrievalEnhanced Event forecasting framework.
Unlike existing methods, we propose methods that enhance user representations via roughly connected entities in the whole graph.
arXiv Detail & Related papers (2022-02-12T19:27:56Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
The cold-start recommendation is an urgent problem in contemporary online applications.
We propose a meta-learning based cold-start sequential recommendation framework called metaCSR.
metaCSR holds the ability to learn the common patterns from regular users' behaviors.
arXiv Detail & Related papers (2021-10-18T08:11:24Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.