Reasoning Beyond Labels: Measuring LLM Sentiment in Low-Resource, Culturally Nuanced Contexts
- URL: http://arxiv.org/abs/2508.04199v1
- Date: Wed, 06 Aug 2025 08:27:55 GMT
- Title: Reasoning Beyond Labels: Measuring LLM Sentiment in Low-Resource, Culturally Nuanced Contexts
- Authors: Millicent Ochieng, Anja Thieme, Ignatius Ezeani, Risa Ueno, Samuel Maina, Keshet Ronen, Javier Gonzalez, Jacki O'Neill,
- Abstract summary: We present a framework that treats sentiment as a context-dependent, culturally embedded construct.<n>We evaluate how large language models (LLMs) reason about sentiment in WhatsApp messages from Nairobi youth health groups.
- Score: 10.492471013369782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentiment analysis in low-resource, culturally nuanced contexts challenges conventional NLP approaches that assume fixed labels and universal affective expressions. We present a diagnostic framework that treats sentiment as a context-dependent, culturally embedded construct, and evaluate how large language models (LLMs) reason about sentiment in informal, code-mixed WhatsApp messages from Nairobi youth health groups. Using a combination of human-annotated data, sentiment-flipped counterfactuals, and rubric-based explanation evaluation, we probe LLM interpretability, robustness, and alignment with human reasoning. Framing our evaluation through a social-science measurement lens, we operationalize and interrogate LLMs outputs as an instrument for measuring the abstract concept of sentiment. Our findings reveal significant variation in model reasoning quality, with top-tier LLMs demonstrating interpretive stability, while open models often falter under ambiguity or sentiment shifts. This work highlights the need for culturally sensitive, reasoning-aware AI evaluation in complex, real-world communication.
Related papers
- How LLMs Comprehend Temporal Meaning in Narratives: A Case Study in Cognitive Evaluation of LLMs [13.822169295436177]
We investigate how large language models (LLMs) process the temporal meaning of linguistic aspect in narratives that were previously used in human studies.<n>Our findings show that LLMs over-rely on prototypicality, produce inconsistent aspectual judgments, and struggle with causal reasoning derived from aspect.<n>These results suggest that LLMs process aspect fundamentally differently from humans and lack robust narrative understanding.
arXiv Detail & Related papers (2025-07-18T18:28:35Z) - Comparing LLM Text Annotation Skills: A Study on Human Rights Violations in Social Media Data [2.812898346527047]
This study investigates the capabilities of large language models (LLMs) for zero-shot and few-shot annotation of social media posts in Russian and Ukrainian.<n>To evaluate the effectiveness of these models, their annotations are compared against a gold standard set of human double-annotated labels.<n>The study explores the unique patterns of errors and disagreements exhibited by each model, offering insights into their strengths, limitations, and cross-linguistic adaptability.
arXiv Detail & Related papers (2025-05-15T13:10:47Z) - Meaning Beyond Truth Conditions: Evaluating Discourse Level Understanding via Anaphora Accessibility [1.7985432767595741]
We present a hierarchy of natural language understanding abilities.<n>We argue for the importance of moving beyond assessments of understanding at the lexical and sentence levels to the discourse level.
arXiv Detail & Related papers (2025-02-19T21:45:26Z) - Exploring Robustness of LLMs to Paraphrasing Based on Sociodemographic Factors [7.312170216336085]
We extend the SocialIQA dataset to create diverse paraphrased sets conditioned on sociodemographic factors.<n>We find that demographic-based paraphrasing significantly impacts the performance of language models.
arXiv Detail & Related papers (2025-01-14T17:50:06Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.<n>We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.<n>Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
For subjective tasks such as hate detection, where people perceive hate differently, the Large Language Model's (LLM) ability to represent diverse groups is unclear.
By including additional context in prompts, we analyze LLM's sensitivity to geographical priming, persona attributes, and numerical information to assess how well the needs of various groups are reflected.
arXiv Detail & Related papers (2024-10-03T16:43:17Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
Task of reading comprehension (RC) provides a primary means to assess language models' natural language understanding (NLU) capabilities.<n>If the context aligns with the models' internal knowledge, it is hard to discern whether the models' answers stem from context comprehension or from internal information.<n>To address this issue, we suggest to use RC on imaginary data, based on fictitious facts and entities.
arXiv Detail & Related papers (2024-04-09T13:08:56Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
This survey underscores the imperative for increased explainability in Large Language Models (LLMs)
Our focus is primarily on pre-trained Transformer-based LLMs, which pose distinctive interpretability challenges due to their scale and complexity.
When considering the utilization of explainability, we explore several compelling methods that concentrate on model editing, control generation, and model enhancement.
arXiv Detail & Related papers (2024-01-23T16:09:53Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
We evaluate language understanding capacities on simple inference tasks that most humans find trivial.
We target (i) grammatically-specified entailments, (ii) premises with evidential adverbs of uncertainty, and (iii) monotonicity entailments.
The models exhibit moderate to low performance on these evaluation sets.
arXiv Detail & Related papers (2023-05-24T06:41:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.