Comparing LLM Text Annotation Skills: A Study on Human Rights Violations in Social Media Data
- URL: http://arxiv.org/abs/2505.10260v1
- Date: Thu, 15 May 2025 13:10:47 GMT
- Title: Comparing LLM Text Annotation Skills: A Study on Human Rights Violations in Social Media Data
- Authors: Poli Apollinaire Nemkova, Solomon Ubani, Mark V. Albert,
- Abstract summary: This study investigates the capabilities of large language models (LLMs) for zero-shot and few-shot annotation of social media posts in Russian and Ukrainian.<n>To evaluate the effectiveness of these models, their annotations are compared against a gold standard set of human double-annotated labels.<n>The study explores the unique patterns of errors and disagreements exhibited by each model, offering insights into their strengths, limitations, and cross-linguistic adaptability.
- Score: 2.812898346527047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of increasingly sophisticated natural language processing (NLP) systems, large language models (LLMs) have demonstrated remarkable potential for diverse applications, including tasks requiring nuanced textual understanding and contextual reasoning. This study investigates the capabilities of multiple state-of-the-art LLMs - GPT-3.5, GPT-4, LLAMA3, Mistral 7B, and Claude-2 - for zero-shot and few-shot annotation of a complex textual dataset comprising social media posts in Russian and Ukrainian. Specifically, the focus is on the binary classification task of identifying references to human rights violations within the dataset. To evaluate the effectiveness of these models, their annotations are compared against a gold standard set of human double-annotated labels across 1000 samples. The analysis includes assessing annotation performance under different prompting conditions, with prompts provided in both English and Russian. Additionally, the study explores the unique patterns of errors and disagreements exhibited by each model, offering insights into their strengths, limitations, and cross-linguistic adaptability. By juxtaposing LLM outputs with human annotations, this research contributes to understanding the reliability and applicability of LLMs for sensitive, domain-specific tasks in multilingual contexts. It also sheds light on how language models handle inherently subjective and context-dependent judgments, a critical consideration for their deployment in real-world scenarios.
Related papers
- A Dual-Layered Evaluation of Geopolitical and Cultural Bias in LLMs [0.6494933736121663]
Large language models (LLMs) are increasingly deployed across diverse linguistic and cultural contexts.<n>This paper defines two types of bias in LLMs: model bias (bias stemming from model training) and inference bias (bias induced by the language of the query)<n>We construct a manually curated dataset spanning both factual and disputable QA, across four languages and question types.
arXiv Detail & Related papers (2025-06-27T03:37:15Z) - Unveiling the Capabilities of Large Language Models in Detecting Offensive Language with Annotation Disagreement [22.992484902761994]
This study systematically evaluates the performance of multiple Large Language Models (LLMs) in detecting offensive language.<n>We analyze binary classification accuracy, examine the relationship between model confidence and human disagreement, and explore how disagreement samples influence model decision-making.
arXiv Detail & Related papers (2025-02-10T07:14:26Z) - Exploring Robustness of LLMs to Sociodemographically-Conditioned Paraphrasing [7.312170216336085]
We take a broader approach to explore a wider range of variations across sociodemographic dimensions.<n>We extend the SocialIQA dataset to create diverse paraphrased sets conditioned on sociodemographic styles.<n>We find that demographic-specific paraphrasing significantly impacts the performance of language models.
arXiv Detail & Related papers (2025-01-14T17:50:06Z) - Mitigating Biases to Embrace Diversity: A Comprehensive Annotation Benchmark for Toxic Language [0.0]
This study introduces a prescriptive annotation benchmark grounded in humanities research to ensure consistent, unbiased labeling of offensive language.
We contribute two newly annotated datasets that achieve higher inter-annotator agreement between human and language model (LLM) annotations.
arXiv Detail & Related papers (2024-10-17T08:10:24Z) - Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
For subjective tasks such as hate detection, where people perceive hate differently, the Large Language Model's (LLM) ability to represent diverse groups is unclear.
By including additional context in prompts, we analyze LLM's sensitivity to geographical priming, persona attributes, and numerical information to assess how well the needs of various groups are reflected.
arXiv Detail & Related papers (2024-10-03T16:43:17Z) - Predicting Emotion Intensity in Polish Political Texts: Comparing Supervised Models and Large Language Models in a Resource-Poor Language [0.0]
This study explores the use of large language models (LLMs) to predict emotion intensity in Polish political texts.
The research compares the performance of several LLMs against a supervised model trained on an annotated corpus of 10,000 social media texts.
arXiv Detail & Related papers (2024-07-16T19:53:14Z) - Can Large Language Models Understand Context? [17.196362853457412]
This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models.
Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models.
As LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings.
arXiv Detail & Related papers (2024-02-01T18:55:29Z) - CoAnnotating: Uncertainty-Guided Work Allocation between Human and Large
Language Models for Data Annotation [94.59630161324013]
We propose CoAnnotating, a novel paradigm for Human-LLM co-annotation of unstructured texts at scale.
Our empirical study shows CoAnnotating to be an effective means to allocate work from results on different datasets, with up to 21% performance improvement over random baseline.
arXiv Detail & Related papers (2023-10-24T08:56:49Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
We evaluate language understanding capacities on simple inference tasks that most humans find trivial.
We target (i) grammatically-specified entailments, (ii) premises with evidential adverbs of uncertainty, and (iii) monotonicity entailments.
The models exhibit moderate to low performance on these evaluation sets.
arXiv Detail & Related papers (2023-05-24T06:41:09Z) - Using Natural Language Explanations to Rescale Human Judgments [81.66697572357477]
We propose a method to rescale ordinal annotations and explanations using large language models (LLMs)
We feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric.
Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.
arXiv Detail & Related papers (2023-05-24T06:19:14Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
Large language models (LLMs) can produce coherent, cohesive, relevant, and fluent answers for various natural language processing (NLP) tasks.
This paper provides an in-depth evaluation of LLMs' ability on discourse modeling.
arXiv Detail & Related papers (2023-04-05T03:49:06Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.