Bootstrap Deep Spectral Clustering with Optimal Transport
- URL: http://arxiv.org/abs/2508.04200v1
- Date: Wed, 06 Aug 2025 08:30:30 GMT
- Title: Bootstrap Deep Spectral Clustering with Optimal Transport
- Authors: Wengang Guo, Wei Ye, Chunchun Chen, Xin Sun, Christian Böhm, Claudia Plant, Susanto Rahardja,
- Abstract summary: Experimental results indicate that BootSC achieves state-of-the-art clustering performance.<n>BootSC accomplishes a notable 16% NMI improvement over the runner-up method on the challenging ImageNet-Dogs dataset.
- Score: 18.630037263667358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spectral clustering is a leading clustering method. Two of its major shortcomings are the disjoint optimization process and the limited representation capacity. To address these issues, we propose a deep spectral clustering model (named BootSC), which jointly learns all stages of spectral clustering -- affinity matrix construction, spectral embedding, and $k$-means clustering -- using a single network in an end-to-end manner. BootSC leverages effective and efficient optimal-transport-derived supervision to bootstrap the affinity matrix and the cluster assignment matrix. Moreover, a semantically-consistent orthogonal re-parameterization technique is introduced to orthogonalize spectral embeddings, significantly enhancing the discrimination capability. Experimental results indicate that BootSC achieves state-of-the-art clustering performance. For example, it accomplishes a notable 16\% NMI improvement over the runner-up method on the challenging ImageNet-Dogs dataset. Our code is available at https://github.com/spdj2271/BootSC.
Related papers
- Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images [51.95768218975529]
Subspace clustering has become widely adopted for the unsupervised analysis of hyperspectral images (HSIs)<n>Recent model-aware deep subspace clustering methods often use a two-stage framework, involving the calculation of a self-representation matrix with complexity of O(n2), followed by spectral clustering.<n>We propose a scalable, context-preserving deep clustering method based on basis representation, which jointly captures local and non-local structures for efficient HSI clustering.
arXiv Detail & Related papers (2025-06-12T16:43:09Z) - Deep Spectral Clustering via Joint Spectral Embedding and Kmeans [4.266012989684753]
We introduce textbfDeep textbfSpectral textbfClustering (textbfDSC), which consists of two main modules: the spectral embedding module and the greedy Kmeans module.<n>The former module learns to efficiently embed raw samples into the spectral embedding space using deep neural networks and power iteration.<n>The latter module improves the cluster structures of Kmeans on the learned spectral embeddings by a greedy optimization strategy.
arXiv Detail & Related papers (2024-12-15T06:40:22Z) - Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Self-Tuning Spectral Clustering for Speaker Diarization [19.487611671681968]
We present a novel pruning algorithm to create a sparse affinity matrix called spectral clustering on p-neighborhood retained affinity matrix (SC-pNA)<n>Our method improves on node-specific fixed neighbor selection by allowing a variable number of neighbors, eliminating the need for external tuning data.<n> Experimental results on the challenging DIHARD-III dataset highlight the superiority of SC-pNA.
arXiv Detail & Related papers (2024-09-16T05:07:47Z) - OMH: Structured Sparsity via Optimally Matched Hierarchy for Unsupervised Semantic Segmentation [69.37484603556307]
Un Semantic segmenting (USS) involves segmenting images without relying on predefined labels.
We introduce a novel approach called Optimally Matched Hierarchy (OMH) to simultaneously address the above issues.
Our OMH yields better unsupervised segmentation performance compared to existing USS methods.
arXiv Detail & Related papers (2024-03-11T09:46:41Z) - One-Step Late Fusion Multi-view Clustering with Compressed Subspace [29.02032034647922]
We propose an integrated framework named One-Step Late Fusion Multi-view Clustering with Compressed Subspace (OS-LFMVC-CS)
We use the consensus subspace to align the partition matrix while optimizing the partition fusion, and utilize the fused partition matrix to guide the learning of discrete labels.
arXiv Detail & Related papers (2024-01-03T06:18:30Z) - Revisiting Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [69.15976031704687]
We propose IAC (Instance-Adaptive Clustering), the first algorithm whose performance matches the instance-specific lower bounds both in expectation and with high probability.<n>IAC maintains an overall computational complexity of $ mathcalO(n, textpolylog(n) $, making it scalable and practical for large-scale problems.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - LSEC: Large-scale spectral ensemble clustering [8.545202841051582]
We propose a large-scale spectral ensemble clustering (LSEC) method to strike a good balance between efficiency and effectiveness.
The LSEC method achieves a lower computational complexity than most existing ensemble clustering methods.
arXiv Detail & Related papers (2021-06-18T00:42:03Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.