Intention Enhanced Diffusion Model for Multimodal Pedestrian Trajectory Prediction
- URL: http://arxiv.org/abs/2508.04229v1
- Date: Wed, 06 Aug 2025 09:04:54 GMT
- Title: Intention Enhanced Diffusion Model for Multimodal Pedestrian Trajectory Prediction
- Authors: Yu Liu, Zhijie Liu, Xiao Ren, You-Fu Li, He Kong,
- Abstract summary: Predicting pedestrian motion trajectories is critical for path planning and motion control of autonomous vehicles.<n>Recent diffusion-based models have shown promising results in capturing theity of pedestrian behavior for trajectory prediction.<n>We propose a diffusion-based multimodal trajectory prediction model that incorporates pedestrians' motion intentions into the prediction framework.
- Score: 15.151965172049271
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting pedestrian motion trajectories is critical for path planning and motion control of autonomous vehicles. However, accurately forecasting crowd trajectories remains a challenging task due to the inherently multimodal and uncertain nature of human motion. Recent diffusion-based models have shown promising results in capturing the stochasticity of pedestrian behavior for trajectory prediction. However, few diffusion-based approaches explicitly incorporate the underlying motion intentions of pedestrians, which can limit the interpretability and precision of prediction models. In this work, we propose a diffusion-based multimodal trajectory prediction model that incorporates pedestrians' motion intentions into the prediction framework. The motion intentions are decomposed into lateral and longitudinal components, and a pedestrian intention recognition module is introduced to enable the model to effectively capture these intentions. Furthermore, we adopt an efficient guidance mechanism that facilitates the generation of interpretable trajectories. The proposed framework is evaluated on two widely used human trajectory prediction benchmarks, ETH and UCY, on which it is compared against state-of-the-art methods. The experimental results demonstrate that our method achieves competitive performance.
Related papers
- TrajFlow: Multi-modal Motion Prediction via Flow Matching [29.274577509291973]
We introduce TrajFlow, a novel flow matching-based motion prediction framework.<n>TrajFlow predicts multiple plausible future trajectories in a single pass, significantly reducing computational overhead.<n>It achieves state-of-the-art performance across various key metrics, underscoring its effectiveness for safety-critical autonomous driving applications.
arXiv Detail & Related papers (2025-06-10T08:08:31Z) - STGDPM:Vessel Trajectory Prediction with Spatio-Temporal Graph Diffusion Probabilistic Model [0.0]
Vessel trajectory prediction is a critical component for ensuring maritime traffic safety and avoiding collisions.<n>Due to the inherent uncertainty in vessel behavior, trajectory prediction systems must adopt a multimodal approach to accurately model potential future motion states.<n>We propose modeling interactions as dynamic graphs, replacing traditional aggregation-based techniques that rely on vessel states.
arXiv Detail & Related papers (2025-03-11T05:50:27Z) - ADM: Accelerated Diffusion Model via Estimated Priors for Robust Motion Prediction under Uncertainties [6.865435680843742]
We propose a novel diffusion-based, acceleratable framework that adeptly predicts future trajectories of agents with enhanced resistance to noise.
Our method meets the rigorous real-time operational standards essential for autonomous vehicles.
It achieves significant improvement in multi-agent motion prediction on the Argoverse 1 motion forecasting dataset.
arXiv Detail & Related papers (2024-05-01T18:16:55Z) - Certified Human Trajectory Prediction [66.1736456453465]
We propose a certification approach tailored for trajectory prediction that provides guaranteed robustness.<n>To mitigate the inherent performance drop through certification, we propose a diffusion-based trajectory denoiser and integrate it into our method.<n>We demonstrate the accuracy and robustness of the certified predictors and highlight their advantages over the non-certified ones.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
We propose a novel Goal-Guided Diffusion Model with Tree Sampling for multi-modal trajectory prediction.<n>A two-stage tree sampling algorithm is presented, which leverages common features to reduce the inference time and improve accuracy for multi-modal prediction.<n> Experimental results demonstrate that our proposed framework achieves comparable state-of-the-art performance with real-time inference speed in public datasets.
arXiv Detail & Related papers (2023-11-25T03:55:06Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
Trajectory prediction is essential for autonomous vehicles to plan correct and safe driving behaviors.
We devise an optimization-based adversarial attack framework to generate realistic adversarial trajectories.
Our attack can lead an AV to drive off road or collide into other vehicles in simulation.
arXiv Detail & Related papers (2022-09-19T03:34:59Z) - Action-based Contrastive Learning for Trajectory Prediction [4.675212251005813]
Trajectory prediction is an essential task for successful human robot interaction, such as in autonomous driving.
In this work, we address the problem of predicting future pedestrian trajectories in a first person view setting with a moving camera.
We propose a novel action-based contrastive learning loss, that utilizes pedestrian action information to improve the learned trajectory embeddings.
arXiv Detail & Related papers (2022-07-18T15:02:27Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.