T3Time: Tri-Modal Time Series Forecasting via Adaptive Multi-Head Alignment and Residual Fusion
- URL: http://arxiv.org/abs/2508.04251v1
- Date: Wed, 06 Aug 2025 09:31:44 GMT
- Title: T3Time: Tri-Modal Time Series Forecasting via Adaptive Multi-Head Alignment and Residual Fusion
- Authors: Abdul Monaf Chowdhury, Rabeya Akter, Safaeid Hossain Arib,
- Abstract summary: T3Time is a novel trimodal framework consisting of time, spectral, and prompt branches.<n>It learns prioritization between temporal and spectral features based on the prediction horizon.<n>Our model consistently outperforms state-of-the-art baselines.
- Score: 0.4915744683251151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multivariate time series forecasting (MTSF) seeks to model temporal dynamics among variables to predict future trends. Transformer-based models and large language models (LLMs) have shown promise due to their ability to capture long-range dependencies and patterns. However, current methods often rely on rigid inductive biases, ignore intervariable interactions, or apply static fusion strategies that limit adaptability across forecast horizons. These limitations create bottlenecks in capturing nuanced, horizon-specific relationships in time-series data. To solve this problem, we propose T3Time, a novel trimodal framework consisting of time, spectral, and prompt branches, where the dedicated frequency encoding branch captures the periodic structures along with a gating mechanism that learns prioritization between temporal and spectral features based on the prediction horizon. We also proposed a mechanism which adaptively aggregates multiple cross-modal alignment heads by dynamically weighting the importance of each head based on the features. Extensive experiments on benchmark datasets demonstrate that our model consistently outperforms state-of-the-art baselines, achieving an average reduction of 3.28% in MSE and 2.29% in MAE. Furthermore, it shows strong generalization in few-shot learning settings: with 5% training data, we see a reduction in MSE and MAE by 4.13% and 1.91%, respectively; and with 10% data, by 3.62% and 1.98% on average. Code - https://github.com/monaf-chowdhury/T3Time/
Related papers
- VisionTS++: Cross-Modal Time Series Foundation Model with Continual Pre-trained Visual Backbones [27.97547118858576]
We propose VisionTS++, a vision-model-based TSFM that performs continual pre-training on large-scale time series datasets.<n>Our work establishes a new paradigm for cross-modal knowledge transfer, advancing the development of universal TSFMs.
arXiv Detail & Related papers (2025-08-06T12:17:09Z) - PFformer: A Position-Free Transformer Variant for Extreme-Adaptive Multivariate Time Series Forecasting [9.511600544581425]
PFformer is a position-free Transformer-based model designed for single-target MTS forecasting.<n> PFformer integrates two novel embedding strategies: Enhanced Feature-based Embedding (EFE) and Auto-Encoder-based Embedding (AEE)
arXiv Detail & Related papers (2025-02-27T22:21:27Z) - TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification [13.110156202816112]
We propose a novel multi-view approach to capture patterns with properties like shift equivariance.<n>Our method integrates diverse features, including spectral, temporal, local, and global features, to obtain rich, complementary contexts for TSC.<n>Our approach achieves average accuracy improvements of 4.01-6.45% and 7.93% respectively, over leading TSC models.
arXiv Detail & Related papers (2024-06-06T18:05:10Z) - Parsimony or Capability? Decomposition Delivers Both in Long-term Time Series Forecasting [46.63798583414426]
Long-term time series forecasting (LTSF) represents a critical frontier in time series analysis.
Our study demonstrates, through both analytical and empirical evidence, that decomposition is key to containing excessive model inflation.
Remarkably, by tailoring decomposition to the intrinsic dynamics of time series data, our proposed model outperforms existing benchmarks.
arXiv Detail & Related papers (2024-01-22T13:15:40Z) - FCDNet: Frequency-Guided Complementary Dependency Modeling for
Multivariate Time-Series Forecasting [9.083469629116784]
We propose FCDNet, a concise yet effective framework for time-series forecasting.
It helps extract long- and short-term dependency information adaptively from multi-level frequency patterns.
Experiments show that FCDNet significantly exceeds strong baselines.
arXiv Detail & Related papers (2023-12-27T07:29:52Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - PatchMixer: A Patch-Mixing Architecture for Long-Term Time Series Forecasting [3.7244649185886978]
We propose PatchMixer, a novel CNN-based model.
It introduces a permutation-variant convolutional structure to preserve temporal information.
Compared with the state-of-the-art method and the best-performing CNN, PatchMixer yields $3.9%$ and $21.2%$ relative improvements.
arXiv Detail & Related papers (2023-10-01T12:47:59Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.