VisionTS++: Cross-Modal Time Series Foundation Model with Continual Pre-trained Visual Backbones
- URL: http://arxiv.org/abs/2508.04379v1
- Date: Wed, 06 Aug 2025 12:17:09 GMT
- Title: VisionTS++: Cross-Modal Time Series Foundation Model with Continual Pre-trained Visual Backbones
- Authors: Lefei Shen, Mouxiang Chen, Xu Liu, Han Fu, Xiaoxue Ren, Jianling Sun, Zhuo Li, Chenghao Liu,
- Abstract summary: We propose VisionTS++, a vision-model-based TSFM that performs continual pre-training on large-scale time series datasets.<n>Our work establishes a new paradigm for cross-modal knowledge transfer, advancing the development of universal TSFMs.
- Score: 27.97547118858576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies have revealed that vision models pre-trained on images can perform well in time series forecasting by reformulating forecasting as an image reconstruction task, suggesting their potential as universal time series foundation models. However, effective cross-modal transfer from vision to time series remains challenging due to three key discrepancies: (1) data-modality gap between structured, bounded image data and unbounded, heterogeneous time series; (2) multivariate-forecasting gap between standard RGB three-channel-based vision models and the need to model time series with arbitrary numbers of variates; and (3) probabilistic-forecasting gap between the deterministic output formats of most vision models and the requirement for uncertainty-aware probabilistic predictions. To bridge these gaps, we propose VisionTS++, a vision-model-based TSFM that performs continual pre-training on large-scale time series datasets, including 3 innovations: (1) a vision-model-based filtering mechanism to identify high-quality time series data, thereby mitigating modality gap and improving pre-training stability, (2) a colorized multivariate conversion method that transforms multivariate time series into multi-subfigure RGB images, capturing complex inter-variate dependencies; and (3) a multi-quantile forecasting approach using parallel reconstruction heads to generate forecasts of different quantile levels, thus more flexibly approximating arbitrary output distributions without restrictive prior distributional assumptions. Evaluated on both in-distribution and out-of-distribution TSF benchmarks, \model achieves SOTA results, outperforming specialized TSFMs by 6%-44% in MSE reduction and ranking first in 9 out of 12 probabilistic forecasting settings. Our work establishes a new paradigm for cross-modal knowledge transfer, advancing the development of universal TSFMs.
Related papers
- T3Time: Tri-Modal Time Series Forecasting via Adaptive Multi-Head Alignment and Residual Fusion [0.4915744683251151]
T3Time is a novel trimodal framework consisting of time, spectral, and prompt branches.<n>It learns prioritization between temporal and spectral features based on the prediction horizon.<n>Our model consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2025-08-06T09:31:44Z) - MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings [75.0617088717528]
MoCa is a framework for transforming pre-trained VLM backbones into effective bidirectional embedding models.<n>MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results.
arXiv Detail & Related papers (2025-06-29T06:41:00Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.<n>A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.<n>An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - UTSD: Unified Time Series Diffusion Model [13.555837288440946]
A Unified Time Series Diffusion model is established for the first time to model the multi-domain probability distribution.<n>We conduct extensive experiments on mainstream benchmarks, and the pre-trained UTSD outperforms existing foundation models on all data domains.
arXiv Detail & Related papers (2024-12-04T06:42:55Z) - DisenTS: Disentangled Channel Evolving Pattern Modeling for Multivariate Time Series Forecasting [43.071713191702486]
DisenTS is a tailored framework for modeling disentangled channel evolving patterns in general time series forecasting.
We introduce a novel Forecaster Aware Gate (FAG) module that generates the routing signals adaptively according to both the forecasters' states and input series' characteristics.
arXiv Detail & Related papers (2024-10-30T12:46:14Z) - DAM: Towards A Foundation Model for Time Series Forecasting [0.8231118867997028]
We propose a neural model that takes randomly sampled histories and outputs an adjustable basis composition as a continuous function of time.
It involves three key components: (1) a flexible approach for using randomly sampled histories from a long-tail distribution; (2) a transformer backbone that is trained on these actively sampled histories to produce, as representational output; and (3) the basis coefficients of a continuous function of time.
arXiv Detail & Related papers (2024-07-25T08:48:07Z) - MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
We propose a Multi-Grained Correlations-based Prediction Network.
It simultaneously considers correlations at three levels to enhance prediction performance.
It employs adversarial training with an attention mechanism-based predictor and conditional discriminator to optimize prediction results at coarse-grained level.
arXiv Detail & Related papers (2024-05-30T03:32:44Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Temporal Saliency Detection Towards Explainable Transformer-based
Timeseries Forecasting [3.046315755726937]
This paper introduces Temporal Saliency Detection (TSD), an effective approach that builds upon the attention mechanism and applies it to multi-horizon time series prediction.
The TSD approach facilitates the multiresolution analysis of saliency patterns by condensing multi-heads, thereby progressively enhancing the forecasting of complex time series data.
arXiv Detail & Related papers (2022-12-15T12:47:59Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Improving the Accuracy of Global Forecasting Models using Time Series
Data Augmentation [7.38079566297881]
Forecasting models that are trained across sets of many time series, known as Global Forecasting Models (GFM), have shown promising results in forecasting competitions and real-world applications.
We propose a novel, data augmentation based forecasting framework that is capable of improving the baseline accuracy of GFM models in less data-abundant settings.
arXiv Detail & Related papers (2020-08-06T13:52:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.