TDSNNs: Competitive Topographic Deep Spiking Neural Networks for Visual Cortex Modeling
- URL: http://arxiv.org/abs/2508.04270v1
- Date: Wed, 06 Aug 2025 09:53:39 GMT
- Title: TDSNNs: Competitive Topographic Deep Spiking Neural Networks for Visual Cortex Modeling
- Authors: Deming Zhou, Yuetong Fang, Zhaorui Wang, Renjing Xu,
- Abstract summary: We propose a novel Spatio-Temporal Constraints loss function for topographic deep spiking neural networks (SNNs)<n>Our results show that STC effectively generates representative topographic features across simulated visual cortical areas.<n>We also reveal that topographic organization facilitates efficient and stable temporal information processing via the spike mechanism in TDSNNs.
- Score: 1.732019193517103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The primate visual cortex exhibits topographic organization, where functionally similar neurons are spatially clustered, a structure widely believed to enhance neural processing efficiency. While prior works have demonstrated that conventional deep ANNs can develop topographic representations, these models largely neglect crucial temporal dynamics. This oversight often leads to significant performance degradation in tasks like object recognition and compromises their biological fidelity. To address this, we leverage spiking neural networks (SNNs), which inherently capture spike-based temporal dynamics and offer enhanced biological plausibility. We propose a novel Spatio-Temporal Constraints (STC) loss function for topographic deep spiking neural networks (TDSNNs), successfully replicating the hierarchical spatial functional organization observed in the primate visual cortex from low-level sensory input to high-level abstract representations. Our results show that STC effectively generates representative topographic features across simulated visual cortical areas. While introducing topography typically leads to significant performance degradation in ANNs, our spiking architecture exhibits a remarkably small performance drop (No drop in ImageNet top-1 accuracy, compared to a 3\% drop observed in TopoNet, which is the best-performing topographic ANN so far) and outperforms topographic ANNs in brain-likeness. We also reveal that topographic organization facilitates efficient and stable temporal information processing via the spike mechanism in TDSNNs, contributing to model robustness. These findings suggest that TDSNNs offer a compelling balance between computational performance and brain-like features, providing not only a framework for interpreting neural science phenomena but also novel insights for designing more efficient and robust deep learning models.
Related papers
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
Spiking Neural Networks (SNNs) draw inspiration from biological neurons to create realistic models for brain-like computation.<n>Most existing SNNs assume a single time constant for neuronal membrane voltage dynamics, modeled by first-order ordinary differential equations (ODEs) with Markovian characteristics.<n>We propose the Fractional SPIKE Differential Equation neural network (fspikeDE), which captures long-term dependencies in membrane voltage and spike trains through fractional-order dynamics.
arXiv Detail & Related papers (2025-07-22T18:20:56Z) - Spiking Meets Attention: Efficient Remote Sensing Image Super-Resolution with Attention Spiking Neural Networks [57.17129753411926]
Spiking neural networks (SNNs) are emerging as a promising alternative to traditional artificial neural networks (ANNs)<n>We propose SpikeSR, which achieves state-of-the-art performance across various remote sensing benchmarks such as AID, DOTA, and DIOR.
arXiv Detail & Related papers (2025-03-06T09:06:06Z) - Unveiling the Potential of Spiking Dynamics in Graph Representation Learning through Spatial-Temporal Normalization and Coding Strategies [15.037300421748107]
spiking neural networks (SNNs) have attracted substantial interest due to their potential to replicate the energy-efficient and event-driven processing of neurons.
This work examines the unique properties and benefits of spiking dynamics in enhancing graph representation learning.
We propose a spike-based graph neural network model that incorporates spiking dynamics, enhanced by a novel spatial-temporal feature normalization (STFN) technique.
arXiv Detail & Related papers (2024-07-30T02:53:26Z) - P-SpikeSSM: Harnessing Probabilistic Spiking State Space Models for Long-Range Dependency Tasks [1.9775291915550175]
Spiking neural networks (SNNs) are posited as a computationally efficient and biologically plausible alternative to conventional neural architectures.<n>We develop a scalable probabilistic spiking learning framework for long-range dependency tasks.<n>Our models attain state-of-the-art performance among SNN models across diverse long-range dependency tasks.
arXiv Detail & Related papers (2024-06-05T04:23:11Z) - SiGNN: A Spike-induced Graph Neural Network for Dynamic Graph Representation Learning [42.716744098170835]
We propose a novel framework named Spike-induced Graph Neural Network (SiGNN) for learning enhanced spatialtemporal representations on dynamic graphs.
Benefiting from the TA mechanism, SiGNN not only effectively exploits the temporal dynamics of SNNs but also adeptly circumvents the representational constraints imposed by the binary nature of spikes.
Extensive experiments on various real-world dynamic graph datasets demonstrate the superior performance of SiGNN in the node classification task.
arXiv Detail & Related papers (2024-03-11T05:19:43Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
Graph convolutional networks (GCN) leverage topology-driven graph convolutional operations to combine information across the graph for inference tasks.
We have studied GCNs with covariance matrices as graphs in the form of coVariance neural networks (VNNs)
VNNs inherit the scale-free data processing architecture from GCNs and here, we show that VNNs exhibit transferability of performance over datasets whose covariance matrices converge to a limit object.
arXiv Detail & Related papers (2023-05-02T22:15:54Z) - Exploiting High Performance Spiking Neural Networks with Efficient
Spiking Patterns [4.8416725611508244]
Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain.
This paper introduces the dynamic Burst pattern and designs the Leaky Integrate and Fire or Burst (LIFB) neuron that can make a trade-off between short-time performance and dynamic temporal performance.
arXiv Detail & Related papers (2023-01-29T04:22:07Z) - STSC-SNN: Spatio-Temporal Synaptic Connection with Temporal Convolution
and Attention for Spiking Neural Networks [7.422913384086416]
Spiking Neural Networks (SNNs), as one of the algorithmic models in neuromorphic computing, have gained a great deal of research attention owing to temporal processing capability.
Existing synaptic structures in SNNs are almost full-connections or spatial 2D convolution, neither which can extract temporal dependencies adequately.
We take inspiration from biological synapses and propose a synaptic connection SNN model, to enhance the synapse-temporal receptive fields of synaptic connections.
We show that endowing synaptic models with temporal dependencies can improve the performance of SNNs on classification tasks.
arXiv Detail & Related papers (2022-10-11T08:13:22Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
Biological spiking neurons with intrinsic dynamics underlie the powerful representation and learning capabilities of the brain.
Despite recent tremendous progress in spiking neural networks (SNNs) for handling Euclidean-space tasks, it still remains challenging to exploit SNNs in processing non-Euclidean-space data.
Here we present a general spike-based modeling framework that enables the direct training of SNNs for graph learning.
arXiv Detail & Related papers (2021-06-30T11:20:16Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.