SiGNN: A Spike-induced Graph Neural Network for Dynamic Graph Representation Learning
- URL: http://arxiv.org/abs/2404.07941v1
- Date: Mon, 11 Mar 2024 05:19:43 GMT
- Title: SiGNN: A Spike-induced Graph Neural Network for Dynamic Graph Representation Learning
- Authors: Dong Chen, Shuai Zheng, Muhao Xu, Zhenfeng Zhu, Yao Zhao,
- Abstract summary: We propose a novel framework named Spike-induced Graph Neural Network (SiGNN) for learning enhanced spatialtemporal representations on dynamic graphs.
Benefiting from the TA mechanism, SiGNN not only effectively exploits the temporal dynamics of SNNs but also adeptly circumvents the representational constraints imposed by the binary nature of spikes.
Extensive experiments on various real-world dynamic graph datasets demonstrate the superior performance of SiGNN in the node classification task.
- Score: 42.716744098170835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the domain of dynamic graph representation learning (DGRL), the efficient and comprehensive capture of temporal evolution within real-world networks is crucial. Spiking Neural Networks (SNNs), known as their temporal dynamics and low-power characteristic, offer an efficient solution for temporal processing in DGRL task. However, owing to the spike-based information encoding mechanism of SNNs, existing DGRL methods employed SNNs face limitations in their representational capacity. Given this issue, we propose a novel framework named Spike-induced Graph Neural Network (SiGNN) for learning enhanced spatialtemporal representations on dynamic graphs. In detail, a harmonious integration of SNNs and GNNs is achieved through an innovative Temporal Activation (TA) mechanism. Benefiting from the TA mechanism, SiGNN not only effectively exploits the temporal dynamics of SNNs but also adeptly circumvents the representational constraints imposed by the binary nature of spikes. Furthermore, leveraging the inherent adaptability of SNNs, we explore an in-depth analysis of the evolutionary patterns within dynamic graphs across multiple time granularities. This approach facilitates the acquisition of a multiscale temporal node representation.Extensive experiments on various real-world dynamic graph datasets demonstrate the superior performance of SiGNN in the node classification task.
Related papers
- Unveiling the Potential of Spiking Dynamics in Graph Representation Learning through Spatial-Temporal Normalization and Coding Strategies [15.037300421748107]
spiking neural networks (SNNs) have attracted substantial interest due to their potential to replicate the energy-efficient and event-driven processing of neurons.
This work examines the unique properties and benefits of spiking dynamics in enhancing graph representation learning.
We propose a spike-based graph neural network model that incorporates spiking dynamics, enhanced by a novel spatial-temporal feature normalization (STFN) technique.
arXiv Detail & Related papers (2024-07-30T02:53:26Z) - DTFormer: A Transformer-Based Method for Discrete-Time Dynamic Graph Representation Learning [38.53424185696828]
The representation learning of Discrete-Time Dynamic Graphs (DTDGs) has been extensively applied to model the dynamics of temporally changing entities and their evolving connections.
This paper introduces a novel representation learning method DTFormer for DTDGs, pivoting from the traditional GNN+RNN framework to a Transformer-based architecture.
arXiv Detail & Related papers (2024-07-26T05:46:23Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - A survey of dynamic graph neural networks [26.162035361191805]
Graph neural networks (GNNs) have emerged as a powerful tool for effectively mining and learning from graph-structured data.
This paper provides a comprehensive review of the fundamental concepts, key techniques, and state-of-the-art dynamic GNN models.
arXiv Detail & Related papers (2024-04-28T15:07:48Z) - Continuous Spiking Graph Neural Networks [43.28609498855841]
Continuous graph neural networks (CGNNs) have garnered significant attention due to their ability to generalize existing discrete graph neural networks (GNNs)
We introduce the high-order structure of COS-GNN, which utilizes the second-order ODE for spiking representation and continuous propagation.
We provide the theoretical proof that COS-GNN effectively mitigates the issues of exploding and vanishing gradients, enabling us to capture long-range dependencies between nodes.
arXiv Detail & Related papers (2024-04-02T12:36:40Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
Biological spiking neurons with intrinsic dynamics underlie the powerful representation and learning capabilities of the brain.
Despite recent tremendous progress in spiking neural networks (SNNs) for handling Euclidean-space tasks, it still remains challenging to exploit SNNs in processing non-Euclidean-space data.
Here we present a general spike-based modeling framework that enables the direct training of SNNs for graph learning.
arXiv Detail & Related papers (2021-06-30T11:20:16Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.