Efficient Inter-Task Attention for Multitask Transformer Models
- URL: http://arxiv.org/abs/2508.04422v1
- Date: Wed, 06 Aug 2025 13:09:02 GMT
- Title: Efficient Inter-Task Attention for Multitask Transformer Models
- Authors: Christian Bohn, Thomas Kurbiel, Klaus Friedrichs, Hasan Tercan, Tobias Meisen,
- Abstract summary: We propose a novel Deformable Inter-Task Self-Attention for Multitask models.<n>In experiments on the NYUD-v2 and PASCAL-Context datasets, we demonstrate an order-of-magnitude reduction in both FLOPs count and inference latency.<n>At the same time, we also achieve substantial improvements by up to 7.4% in the individual tasks' prediction quality metrics.
- Score: 5.216738718339044
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In both Computer Vision and the wider Deep Learning field, the Transformer architecture is well-established as state-of-the-art for many applications. For Multitask Learning, however, where there may be many more queries necessary compared to single-task models, its Multi-Head-Attention often approaches the limits of what is computationally feasible considering practical hardware limitations. This is due to the fact that the size of the attention matrix scales quadratically with the number of tasks (assuming roughly equal numbers of queries for all tasks). As a solution, we propose our novel Deformable Inter-Task Self-Attention for Multitask models that enables the much more efficient aggregation of information across the feature maps from different tasks. In our experiments on the NYUD-v2 and PASCAL-Context datasets, we demonstrate an order-of-magnitude reduction in both FLOPs count and inference latency. At the same time, we also achieve substantial improvements by up to 7.4% in the individual tasks' prediction quality metrics.
Related papers
- Pilot: Building the Federated Multimodal Instruction Tuning Framework [79.56362403673354]
Our framework integrates two stages of "adapter on adapter" into the connector of the vision encoder and the LLM.<n>In stage 1, we extract task-specific features and client-specific features from visual information.<n>In stage 2, we build the cross-task Mixture-of-Adapters(CT-MoA) module to perform cross-task interaction.
arXiv Detail & Related papers (2025-01-23T07:49:24Z) - Optimizing Dense Visual Predictions Through Multi-Task Coherence and Prioritization [7.776434991976473]
Multi-Task Learning (MTL) involves the concurrent training of multiple tasks.<n>We propose an advanced MTL model specifically designed for dense vision tasks.
arXiv Detail & Related papers (2024-12-04T10:05:47Z) - AdapMTL: Adaptive Pruning Framework for Multitask Learning Model [5.643658120200373]
AdapMTL is an adaptive pruning framework for multitask models.
It balances sparsity allocation and accuracy performance across multiple tasks.
It showcases superior performance compared to state-of-the-art pruning methods.
arXiv Detail & Related papers (2024-08-07T17:19:15Z) - A Multitask Deep Learning Model for Classification and Regression of Hyperspectral Images: Application to the large-scale dataset [44.94304541427113]
We propose a multitask deep learning model to perform multiple classification and regression tasks simultaneously on hyperspectral images.
We validated our approach on a large hyperspectral dataset called TAIGA.
A comprehensive qualitative and quantitative analysis of the results shows that the proposed method significantly outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-23T11:14:54Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - InvPT++: Inverted Pyramid Multi-Task Transformer for Visual Scene
Understanding [11.608682595506354]
Multi-task scene understanding aims to design models that can simultaneously predict several scene understanding tasks with one versatile model.
Previous studies typically process multi-task features in a more local way, and thus cannot effectively learn spatially global and cross-task interactions.
We propose an Inverted Pyramid multi-task Transformer, capable of modeling cross-task interaction among spatial features of different tasks in a global context.
arXiv Detail & Related papers (2023-06-08T00:28:22Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly.
Current MTL regimes have to activate nearly the entire model even to just execute a single task.
We present a model-accelerator co-design framework to enable efficient on-device MTL.
arXiv Detail & Related papers (2022-10-26T15:40:24Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
We propose a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints.
We propose a disentangled training of two hypernetworks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights.
arXiv Detail & Related papers (2022-03-28T17:56:40Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning [82.62433731378455]
We show that tasks with high affinity at a certain scale are not guaranteed to retain this behaviour at other scales.
We propose a novel architecture, namely MTI-Net, that builds upon this finding.
arXiv Detail & Related papers (2020-01-19T21:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.