論文の概要: Benchmarking Foundation Models for Mitotic Figure Classification
- arxiv url: http://arxiv.org/abs/2508.04441v1
- Date: Wed, 06 Aug 2025 13:30:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.736165
- Title: Benchmarking Foundation Models for Mitotic Figure Classification
- Title(参考訳): 構造図分類のためのベンチマーク基礎モデル
- Authors: Jonas Ammeling, Jonathan Ganz, Emely Rosbach, Ludwig Lausser, Christof A. Bertram, Katharina Breininger, Marc Aubreville,
- Abstract要約: 自己教師付き学習技術は、大規模なニューラルネットワークのトレーニングに大量のラベルのないデータを使用することを可能にした。
本研究では,ミオティックフィギュア分類における基礎モデルの利用について検討する。
我々は、すべてのモデルと、CNNとVision Transformerの両方のエンドツーエンドトレーニングベースラインを比較した。
- 参考スコア(独自算出の注目度): 0.37334049820361814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of deep learning models is known to scale with data quantity and diversity. In pathology, as in many other medical imaging domains, the availability of labeled images for a specific task is often limited. Self-supervised learning techniques have enabled the use of vast amounts of unlabeled data to train large-scale neural networks, i.e., foundation models, that can address the limited data problem by providing semantically rich feature vectors that can generalize well to new tasks with minimal training effort increasing model performance and robustness. In this work, we investigate the use of foundation models for mitotic figure classification. The mitotic count, which can be derived from this classification task, is an independent prognostic marker for specific tumors and part of certain tumor grading systems. In particular, we investigate the data scaling laws on multiple current foundation models and evaluate their robustness to unseen tumor domains. Next to the commonly used linear probing paradigm, we also adapt the models using low-rank adaptation (LoRA) of their attention mechanisms. We compare all models against end-to-end-trained baselines, both CNNs and Vision Transformers. Our results demonstrate that LoRA-adapted foundation models provide superior performance to those adapted with standard linear probing, reaching performance levels close to 100% data availability with only 10% of training data. Furthermore, LoRA-adaptation of the most recent foundation models almost closes the out-of-domain performance gap when evaluated on unseen tumor domains. However, full fine-tuning of traditional architectures still yields competitive performance.
- Abstract(参考訳): ディープラーニングモデルのパフォーマンスは、データ量と多様性とともにスケールすることが知られている。
病理学では、他の多くの医療画像領域と同様に、特定のタスクに対するラベル付き画像の可用性は制限されることが多い。
自己教師付き学習技術は、大規模なニューラルネットワークのトレーニングに膨大な量の未ラベルデータ、すなわち、モデル性能と堅牢性を高める最小限のトレーニング努力で、新しいタスクによく適応できる意味的にリッチな特徴ベクトルを提供することによって、限られたデータ問題に対処できる基礎モデルを使用することを可能にした。
本研究では,ミオティックフィギュア分類における基礎モデルの利用について検討する。
この分類課題から導出されるミトーシスカウントは、特定の腫瘍と特定の腫瘍グレーティングシステムの一部に対する独立した予後マーカーである。
特に,複数の基礎モデルにおけるデータスケーリング法則について検討し,腫瘍領域に対するロバスト性を評価する。
一般に使われている線形探索パラダイムに次いで、低ランク適応(LoRA)によるアテンション機構のモデルも適応する。
我々は、すべてのモデルと、CNNとVision Transformerの両方のエンドツーエンドトレーニングベースラインを比較した。
以上の結果から,LoRAに適応した基礎モデルは,標準線形探索に適応したモデルよりも優れた性能を示し,トレーニングデータの10%に過ぎず,100%に近いデータ可用性を実現することができた。
さらに、最新の基礎モデルのLoRA適応は、見えない腫瘍ドメインでの評価において、ドメイン外のパフォーマンスギャップをほぼ埋める。
しかし、従来のアーキテクチャの完全な微調整は、依然として競争力のあるパフォーマンスをもたらす。
関連論文リスト
- Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping [1.927195358774599]
大規模なドメイン内データセットの事前トレーニングは、履歴病理基盤モデル(FM)にタスクに依存しないデータ表現を学習する能力を与える。
計算病理学では、スライド全体の自動解析には、スライドのギガピクセルスケールのため、複数のインスタンス学習(MIL)フレームワークが必要である。
本研究は,MIL分類フレームワーク内のパッチレベルの特徴抽出器として,病理組織学的FMを評価するための新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2025-06-23T14:12:16Z) - MeDi: Metadata-Guided Diffusion Models for Mitigating Biases in Tumor Classification [13.350688594462214]
本稿では,このようなメタデータを生成拡散モデルフレームワーク(MeDi)に明示的にモデル化する手法を提案する。
MeDiは、不足しているサブ集団を合成データで対象とする拡張を可能にする。
TCGAの未確認サブポピュレーションに対して,MeDiが高品質な病理像を生成することを実験的に示す。
論文 参考訳(メタデータ) (2025-06-20T16:41:25Z) - AI-Assisted Colonoscopy: Polyp Detection and Segmentation using Foundation Models [0.10037949839020764]
大腸内視鏡検査では、Deep Learningモデルの助けを借りて、欠落したポリープの80%を検出できた。
この課題に対処できるアルゴリズムの探索において、ファンデーションモデルは有望な候補として浮上する。
ゼロショットまたは少数ショットの学習機能により、広範囲の微調整なしに、新しいデータやタスクへの一般化が容易になる。
ポリプセグメンテーションの基礎モデルを総合的に評価し, 検出と分解の両面から評価した。
論文 参考訳(メタデータ) (2025-03-31T14:20:53Z) - Weakly supervised deep learning model with size constraint for prostate cancer detection in multiparametric MRI and generalization to unseen domains [0.90668179713299]
本モデルでは, 完全教師付きベースラインモデルにより, オンパー性能が向上することを示す。
また、未確認データドメインでテストした場合、完全に教師付きモデルと弱い教師付きモデルの両方のパフォーマンス低下も観察する。
論文 参考訳(メタデータ) (2024-11-04T12:24:33Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
知識分解」は、特定の医療課題のパフォーマンス向上を目的としている。
我々はLow-Rank Knowledge Decomposition(LoRKD)という新しいフレームワークを提案する。
LoRKDは、低ランクのエキスパートモジュールと効率的な知識分離畳み込みを組み込むことで、グラデーションを異なるタスクから明確に分離する。
論文 参考訳(メタデータ) (2024-09-29T03:56:21Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
人工知能(AI)の最近の進歩は、医療画像と計算病理に革命をもたらしている。
デジタル全スライド画像(WSI)の解析における一定の課題は、何万ものタイルレベルの画像埋め込みをスライドレベルの表現に集約する問題である。
本研究は,9つの臨床的課題を対象とした10種類のスライドレベルのアグリゲーション手法のベンチマーク分析を行った。
論文 参考訳(メタデータ) (2024-07-10T17:00:57Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
基礎モデルを用いた最先端UniDA手法の実証的研究を行った。
CLIPモデルからターゲット知識を抽出するためのパラメータフリーな手法であるtextitCLIP 蒸留を導入する。
単純な手法ではあるが、ほとんどのベンチマークタスクでは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2023-05-18T16:28:29Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。