論文の概要: Benchmarking Uncertainty and its Disentanglement in multi-label Chest X-Ray Classification
- arxiv url: http://arxiv.org/abs/2508.04457v1
- Date: Wed, 06 Aug 2025 13:58:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.744787
- Title: Benchmarking Uncertainty and its Disentanglement in multi-label Chest X-Ray Classification
- Title(参考訳): マルチラベル胸部X線分類におけるベンチマークの不確かさと歪み
- Authors: Simon Baur, Wojciech Samek, Jackie Ma,
- Abstract要約: コンボリューション(ResNet)とトランスフォーマー(Vision Transformer)アーキテクチャにおける13の不確実性定量化手法を評価する。
Evidential Deep Learning, HetClass NNs, Deep Deterministic Uncertaintyをマルチラベル設定に拡張する。
- 参考スコア(独自算出の注目度): 11.21639536740362
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reliable uncertainty quantification is crucial for trustworthy decision-making and the deployment of AI models in medical imaging. While prior work has explored the ability of neural networks to quantify predictive, epistemic, and aleatoric uncertainties using an information-theoretical approach in synthetic or well defined data settings like natural image classification, its applicability to real life medical diagnosis tasks remains underexplored. In this study, we provide an extensive uncertainty quantification benchmark for multi-label chest X-ray classification using the MIMIC-CXR-JPG dataset. We evaluate 13 uncertainty quantification methods for convolutional (ResNet) and transformer-based (Vision Transformer) architectures across a wide range of tasks. Additionally, we extend Evidential Deep Learning, HetClass NNs, and Deep Deterministic Uncertainty to the multi-label setting. Our analysis provides insights into uncertainty estimation effectiveness and the ability to disentangle epistemic and aleatoric uncertainties, revealing method- and architecture-specific strengths and limitations.
- Abstract(参考訳): 信頼できる不確実性定量化は、信頼できる意思決定と医療画像へのAIモデルの展開に不可欠である。
従来の研究は、自然画像分類のような合成的または明確に定義されたデータ設定における情報理論的アプローチを用いて、予測的、疫学的、およびアレター的不確実性を定量化するニューラルネットワークの能力について検討してきたが、実際の診断タスクへの適用性はまだ未定である。
本研究では,MIMIC-CXR-JPGデータセットを用いたマルチラベル胸部X線分類のための広範囲な不確実性定量化ベンチマークを提案する。
コンボリューション(ResNet)とトランスフォーマーベース(Vision Transformer)の13種類の不確実性定量化手法を多種多様なタスクにわたって評価した。
さらに、Evidential Deep Learning、HetClass NN、Deep Deterministic Uncertaintyをマルチラベル設定に拡張する。
我々の分析は,不確実性推定の有効性と,疫学的・失語論的な不確実性を解き明かし,方法とアーキテクチャ固有の強みと限界を明らかにする能力について考察する。
関連論文リスト
- Hesitation is defeat? Connecting Linguistic and Predictive Uncertainty [2.8186733524862158]
本稿では,ルールベースのラベルラによってラベル付けされた自由テキストレポートから推定される予測不確実性と人・言語不確実性との関係について検討する。
その結果,予測的不確実性と言語的不確実性との間には緩やかな相関関係がみられ,機械の不確実性と人間の解釈を整合させる上での課題が浮き彫りにされた。
論文 参考訳(メタデータ) (2025-05-06T18:34:37Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - Empirical Validation of Conformal Prediction for Trustworthy Skin Lesions Classification [3.7305040207339286]
我々は、深層ニューラルネットワークにおける不確実性定量化を評価するために、コンフォーマル予測、モンテカルロドロップアウト、およびエビデンシャルディープラーニングアプローチを開発した。
結果: 実験結果から, 不確実性定量化はコンフォーマル予測法により著しく向上した。
我々の結論は、様々なテスト条件にまたがる整合予測の頑健で一貫した性能を強調している。
論文 参考訳(メタデータ) (2023-12-12T17:37:16Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - Benchmarking Scalable Epistemic Uncertainty Quantification in Organ
Segmentation [7.313010190714819]
モデル予測に関連する不確実性の定量化は 重要な臨床応用に不可欠です
自動臓器分割のためのディープラーニングに基づく手法は,診断と治療計画を支援する上で有望であることを示す。
医用画像解析設定においてどの方法が好ましいかは不明確である。
論文 参考訳(メタデータ) (2023-08-15T00:09:33Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Uncertainty in Extreme Multi-label Classification [81.14232824864787]
eXtreme Multi-label Classification (XMC)は、Webスケールの機械学習アプリケーションにおいて、ビッグデータの時代において不可欠なタスクである。
本稿では,確率的アンサンブルに基づく木系XMCモデルの一般的な不確実性定量化手法について検討する。
特に,XMCにおけるラベルレベルおよびインスタンスレベルの不確実性を解析し,ビームサーチに基づく一般的な近似フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-18T20:54:33Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
我々は,モデル不連続な不確かさを定量化するベイズ変分フレームワークを提案する。
提案手法はMRIのアンダーサンプを用いた再建術の術後成績を示す。
論文 参考訳(メタデータ) (2021-02-12T18:08:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。