論文の概要: CALE : Concept-Aligned Embeddings for Both Within-Lemma and Inter-Lemma Sense Differentiation
- arxiv url: http://arxiv.org/abs/2508.04494v1
- Date: Wed, 06 Aug 2025 14:43:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.768484
- Title: CALE : Concept-Aligned Embeddings for Both Within-Lemma and Inter-Lemma Sense Differentiation
- Title(参考訳): CALE : 脳内および脳内感覚の区別のための概念適合型埋め込み
- Authors: Bastien Liétard, Gabriel Loiseau,
- Abstract要約: 語彙意味論は、単語が異なる文脈で採用できる複数の感覚と、異なる単語の意味の間に存在する意味的関係の両方に関係している。
それらを調べるために、コンテキスト対応言語モデル(Contextualized Language Models)は、コンテキストに敏感な表現を提供する貴重なツールである。
単語間シナリオを含む拡張である概念差分法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lexical semantics is concerned with both the multiple senses a word can adopt in different contexts, and the semantic relations that exist between meanings of different words. To investigate them, Contextualized Language Models are a valuable tool that provides context-sensitive representations that can be used to investigate lexical meaning. Recent works like XL-LEXEME have leveraged the task of Word-in-Context to fine-tune them to get more semantically accurate representations, but Word-in-Context only compares occurrences of the same lemma, limiting the range of captured information. In this paper, we propose an extension, Concept Differentiation, to include inter-words scenarios. We provide a dataset for this task, derived from SemCor data. Then we fine-tune several representation models on this dataset. We call these models Concept-Aligned Embeddings (CALE). By challenging our models and other models on various lexical semantic tasks, we demonstrate that the proposed models provide efficient multi-purpose representations of lexical meaning that reach best performances in our experiments. We also show that CALE's fine-tuning brings valuable changes to the spatial organization of embeddings.
- Abstract(参考訳): 語彙意味論は、単語が異なる文脈で採用できる複数の感覚と、異なる単語の意味の間に存在する意味的関係の両方に関係している。
それらを調べるために、文脈依存言語モデル(Contextualized Language Models)は、語彙の意味を調べるのに使える文脈依存表現を提供する貴重なツールである。
XL-LEXEMEのような最近の研究は、Word-in-Contextのタスクを利用して、より意味論的に正確な表現を得るが、Word-in-Contextは、同じレムマの発生だけを比較して、取得した情報の範囲を制限する。
本稿では,単語間シナリオを含む拡張である概念差分法を提案する。
SemCorデータから派生したこのタスクのためのデータセットを提供する。
次に、このデータセット上に複数の表現モデルを微調整する。
これらのモデルをCALE(Concept-Aligned Embeddings)と呼ぶ。
様々な語彙意味課題におけるモデルや他のモデルに挑戦することにより,提案モデルが語彙意味の効率的な多目的表現を提供することを実証する。
また,CALEの微調整が埋め込みの空間的構造に有意義な変化をもたらすことを示す。
関連論文リスト
- Tomato, Tomahto, Tomate: Measuring the Role of Shared Semantics among Subwords in Multilingual Language Models [88.07940818022468]
エンコーダのみの多言語言語モデル(mLM)におけるサブワード間の共有セマンティクスの役割を測る第一歩を踏み出した。
意味的に類似したサブワードとその埋め込みをマージして「意味トークン」を形成する。
グループ化されたサブワードの検査では 様々な意味的類似性を示します
論文 参考訳(メタデータ) (2024-11-07T08:38:32Z) - Evaluating Distributed Representations for Multi-Level Lexical Semantics: A Research Proposal [3.3585951129432323]
この論文は、計算モデルと語彙意味論を橋渡しし、互いに補完することを目的としている。
現代のニューラルネットワーク(NN)は、個々の単語を密度が高く連続的な高次元ベクトルに圧縮することで分散表現を構築する。
論文 参考訳(メタデータ) (2024-06-02T14:08:51Z) - Syntax and Semantics Meet in the "Middle": Probing the Syntax-Semantics
Interface of LMs Through Agentivity [68.8204255655161]
このような相互作用を探索するためのケーススタディとして,作用性のセマンティックな概念を提示する。
これは、LMが言語アノテーション、理論テスト、発見のためのより有用なツールとして役立つ可能性を示唆している。
論文 参考訳(メタデータ) (2023-05-29T16:24:01Z) - Always Keep your Target in Mind: Studying Semantics and Improving
Performance of Neural Lexical Substitution [124.99894592871385]
本稿では,従来の言語モデルと最近の言語モデルの両方を用いた語彙置換手法の大規模比較研究を行う。
目的語に関する情報を適切に注入すれば,SOTA LMs/MLMsによるすでに競合する結果がさらに大幅に改善できることを示す。
論文 参考訳(メタデータ) (2022-06-07T16:16:19Z) - IRB-NLP at SemEval-2022 Task 1: Exploring the Relationship Between Words
and Their Semantic Representations [0.0]
本研究は,CODWOEデータセットを用いた記述的,探索的,予測的データ分析に基づいて行った。
本稿では,定義モデリングとリバース辞書タスクのために設計したシステムの概要について述べる。
論文 参考訳(メタデータ) (2022-05-13T18:15:20Z) - Meta-Learning with Variational Semantic Memory for Word Sense
Disambiguation [56.830395467247016]
メタ学習環境におけるWSDのセマンティックメモリモデルを提案する。
我々のモデルは階層的変動推論に基づいており、ハイパーネットワークを介して適応的なメモリ更新ルールを組み込んでいる。
極めて少ないシナリオでの効果的な学習を支援するために,本モデルがWSDで最先端の技術を数ショットで実現していることを示す。
論文 参考訳(メタデータ) (2021-06-05T20:40:01Z) - EDS-MEMBED: Multi-sense embeddings based on enhanced distributional
semantic structures via a graph walk over word senses [0.0]
WordNetの豊富なセマンティック構造を活用して、マルチセンス埋め込みの品質を高めます。
M-SEの新たな分布意味類似度測定法を先行して導出する。
WSDとWordの類似度タスクを含む11のベンチマークデータセットの評価結果を報告します。
論文 参考訳(メタデータ) (2021-02-27T14:36:55Z) - Fake it Till You Make it: Self-Supervised Semantic Shifts for
Monolingual Word Embedding Tasks [58.87961226278285]
語彙意味変化をモデル化するための自己教師付きアプローチを提案する。
本手法は,任意のアライメント法を用いて意味変化の検出に利用できることを示す。
3つの異なるデータセットに対する実験結果を用いて,本手法の有用性について述べる。
論文 参考訳(メタデータ) (2021-01-30T18:59:43Z) - Joint Semantic Analysis with Document-Level Cross-Task Coherence Rewards [13.753240692520098]
本稿では,共用コア参照解決のためのニューラルネットワークアーキテクチャと,英語のセマンティックロールラベリングについて述べる。
我々は、文書と意味的アノテーション間のグローバルコヒーレンスを促進するために強化学習を使用します。
これにより、異なるドメインからの複数のデータセットにおける両方のタスクが改善される。
論文 参考訳(メタデータ) (2020-10-12T09:36:24Z) - Analysing Lexical Semantic Change with Contextualised Word
Representations [7.071298726856781]
本稿では,BERTニューラルネットワークモデルを用いて単語使用率の表現を求める手法を提案する。
我々は新しい評価データセットを作成し、モデル表現と検出された意味変化が人間の判断と正に相関していることを示す。
論文 参考訳(メタデータ) (2020-04-29T12:18:14Z) - Multiplex Word Embeddings for Selectional Preference Acquisition [70.33531759861111]
単語間の様々な関係に応じて容易に拡張できる多重単語埋め込みモデルを提案する。
本モデルでは,不必要なスパース性を導入することなく,関係の異なる単語を効果的に識別することができる。
論文 参考訳(メタデータ) (2020-01-09T04:47:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。