Channel-Independent Federated Traffic Prediction
- URL: http://arxiv.org/abs/2508.04517v1
- Date: Wed, 06 Aug 2025 15:02:28 GMT
- Title: Channel-Independent Federated Traffic Prediction
- Authors: Mo Zhang, Xiaoyu Li, Bin Xu, Meng Chen, Yongshun Gong,
- Abstract summary: We propose a novel variable relationship modeling paradigm for federated traffic prediction, termed the Channel-Independent Paradigm(CIP)<n> CIP eliminates the need for inter-client communication by enabling each node to perform efficient and accurate predictions using only local information.<n>We further develop Fed-CI, an efficient federated learning framework, allowing each client to process its own data independently.
- Score: 18.760826963566856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, traffic prediction has achieved remarkable success and has become an integral component of intelligent transportation systems. However, traffic data is typically distributed among multiple data owners, and privacy constraints prevent the direct utilization of these isolated datasets for traffic prediction. Most existing federated traffic prediction methods focus on designing communication mechanisms that allow models to leverage information from other clients in order to improve prediction accuracy. Unfortunately, such approaches often incur substantial communication overhead, and the resulting transmission delays significantly slow down the training process. As the volume of traffic data continues to grow, this issue becomes increasingly critical, making the resource consumption of current methods unsustainable. To address this challenge, we propose a novel variable relationship modeling paradigm for federated traffic prediction, termed the Channel-Independent Paradigm(CIP). Unlike traditional approaches, CIP eliminates the need for inter-client communication by enabling each node to perform efficient and accurate predictions using only local information. Based on the CIP, we further develop Fed-CI, an efficient federated learning framework, allowing each client to process its own data independently while effectively mitigating the information loss caused by the lack of direct data sharing among clients. Fed-CI significantly reduces communication overhead, accelerates the training process, and achieves state-of-the-art performance while complying with privacy regulations. Extensive experiments on multiple real-world datasets demonstrate that Fed-CI consistently outperforms existing methods across all datasets and federated settings. It achieves improvements of 8%, 14%, and 16% in RMSE, MAE, and MAPE, respectively, while also substantially reducing communication costs.
Related papers
- REFOL: Resource-Efficient Federated Online Learning for Traffic Flow Forecasting [22.118392944492964]
Multiple federated learning (FL) methods are proposed for traffic flow forecasting (TFF) to avoid heavy-transmission and privacy-leaking concerns.
Online learning can detect concept drift during model training, thus more applicable to TFF.
We propose a novel method named Resource-Efficient Federated Online Learning (REFOL) for TFF, which guarantees prediction performance in a communication-lightweight and computation-efficient way.
arXiv Detail & Related papers (2024-11-21T11:50:17Z) - Individualized Federated Learning for Traffic Prediction with Error Driven Aggregation [8.495633193471853]
Federated Learning has emerged as a promising technique for Traffic Prediction.
Current FLTP frameworks lack a real-time model updating scheme.
We propose NeighborFL, an individualized real-time federated learning scheme.
arXiv Detail & Related papers (2024-07-17T00:42:47Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Efficient Cross-Domain Federated Learning by MixStyle Approximation [0.3277163122167433]
We introduce a privacy-preserving, resource-efficient Federated Learning concept for client adaptation in hardware-constrained environments.
Our approach includes server model pre-training on source data and subsequent fine-tuning on target data via low-end clients.
Preliminary results indicate that our method reduces computational and transmission costs while maintaining competitive performance on downstream tasks.
arXiv Detail & Related papers (2023-12-12T08:33:34Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Online Spatio-Temporal Correlation-Based Federated Learning for Traffic
Flow Forecasting [11.253575460227127]
In this paper, we perform the first study of forecasting traffic flow adopting Online Learning (OL) manner in FL framework.
We then propose a novel prediction method named Online Spatio-Temporal Correlation-based Federated Learning (FedOSTC) to guarantee performance gains regardless of traffic fluctuation.
arXiv Detail & Related papers (2023-02-17T02:37:36Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.