論文の概要: Drone Detection with Event Cameras
- arxiv url: http://arxiv.org/abs/2508.04564v1
- Date: Wed, 06 Aug 2025 15:49:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.797507
- Title: Drone Detection with Event Cameras
- Title(参考訳): イベントカメラを用いたドローン検出
- Authors: Gabriele Magrini, Lorenzo Berlincioni, Luca Cultrera, Federico Becattini, Pietro Pala,
- Abstract要約: イベントカメラは、運動のぼやけを事実上排除し、極端な照明で一貫した検出を可能にする。
この研究は、イベントベースのビジョンが次世代の信頼性、低レイテンシ、効率的な対UAVシステムに強力な基盤を提供することを示す。
- 参考スコア(独自算出の注目度): 8.679862302950614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The diffusion of drones presents significant security and safety challenges. Traditional surveillance systems, particularly conventional frame-based cameras, struggle to reliably detect these targets due to their small size, high agility, and the resulting motion blur and poor performance in challenging lighting conditions. This paper surveys the emerging field of event-based vision as a robust solution to these problems. Event cameras virtually eliminate motion blur and enable consistent detection in extreme lighting. Their sparse, asynchronous output suppresses static backgrounds, enabling low-latency focus on motion cues. We review the state-of-the-art in event-based drone detection, from data representation methods to advanced processing pipelines using spiking neural networks. The discussion extends beyond simple detection to cover more sophisticated tasks such as real-time tracking, trajectory forecasting, and unique identification through propeller signature analysis. By examining current methodologies, available datasets, and the distinct advantages of the technology, this work demonstrates that event-based vision provides a powerful foundation for the next generation of reliable, low-latency, and efficient counter-UAV systems.
- Abstract(参考訳): ドローンの普及は、セキュリティと安全性に大きな課題をもたらす。
従来の監視システム、特に従来のフレームベースのカメラは、これらの目標を確実に検出するのに苦労している。
本稿では,これらの問題に対する堅牢な解決策として,イベントベースビジョンの新たな分野を探求する。
イベントカメラは、運動のぼやけを事実上排除し、極端な照明で一貫した検出を可能にする。
スパースで非同期な出力は静的なバックグラウンドを抑圧し、低レイテンシでモーションキューにフォーカスできる。
本稿では,データ表現手法からスパイクニューラルネットワークを用いた高度な処理パイプラインまで,イベントベースのドローン検出技術の現状について概説する。
この議論は、実時間追跡、軌道予測、プロペラシグネチャ分析によるユニークな識別など、より洗練されたタスクをカバーするために、単純な検出以上のものを提供する。
この研究は、現在の方法論、利用可能なデータセット、および技術の独特な利点を調べることで、イベントベースのビジョンが次世代の信頼性、低レイテンシ、効率的な対UAVシステムに強力な基盤を提供することを示した。
関連論文リスト
- A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Trackingは、視覚的な観察に基づいてモーションシステムを制御することで、対象物を自律的に追跡することを目的としている。
DATと呼ばれるオープンワールドドローンアクティブトラッキングのためのクロスシーンクロスドメインベンチマークを提案する。
また、R-VATと呼ばれる強化学習に基づくドローン追跡手法を提案する。
論文 参考訳(メタデータ) (2024-12-01T09:37:46Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
生物学的網膜にインスパイアされたイベントベースのカメラは、最小限の電力要求、無視できるレイテンシ、時間分解能、拡張可能なダイナミックレンジによって区別される最先端のセンサーへと進化してきた。
イベントベースのカメラは、高速撮像のシナリオにおいて、外部データ伝送を誘発し、動きのぼやけをなくすことによって制限に対処する。
本稿では,特に自律運転における研究と応用について概観する。
論文 参考訳(メタデータ) (2024-07-05T06:17:00Z) - Deep Event-based Object Detection in Autonomous Driving: A Survey [7.197775088663435]
イベントカメラは、低レイテンシ、高ダイナミックレンジ、低消費電力のために、自動運転のための有望なセンサーとして登場した。
本稿では,自律走行におけるイベントデータを用いた物体検出の概要について述べる。
論文 参考訳(メタデータ) (2024-05-07T04:17:04Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - FEDORA: Flying Event Dataset fOr Reactive behAvior [9.470870778715689]
イベントベースのセンサーは、高速な動きを捉えるための標準フレームベースのカメラに代わる低レイテンシと低エネルギーの代替として登場した。
Flying Eventデータセット fOr Reactive behAviour (FEDORA) - 知覚タスクのための完全に合成されたデータセット。
論文 参考訳(メタデータ) (2023-05-22T22:59:05Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
ローカライゼーションとマッピングタスクのための非同期および不規則なイベントストリームの利点を利用する、イベントベースのvSLAMアルゴリズムのレビュー。
Paperは、イベントベースのvSLAMメソッドを、特徴ベース、ダイレクト、モーション補償、ディープラーニングの4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-04-19T16:21:14Z) - DOTIE -- Detecting Objects through Temporal Isolation of Events using a
Spiking Architecture [5.340730281227837]
視覚に基づく自律ナビゲーションシステムは障害物を避けるために高速で正確な物体検出アルゴリズムに依存している。
本研究では,イベントに固有の時間的情報を用いて移動物体を効率的に検出する手法を提案する。
我々のアーキテクチャを利用することで、自律ナビゲーションシステムは、オブジェクト検出を行うための最小のレイテンシとエネルギーオーバーヘッドを持つことが示される。
論文 参考訳(メタデータ) (2022-10-03T14:43:11Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
本稿では,イベントベースのトラッキング・バイ・ディテクト(ETD)手法を提案する。
この目的を達成するために,線形時間決定(ATSLTD)イベント・ツー・フレーム変換アルゴリズムを用いた適応時間曲面を提案する。
提案手法と,従来のカメラやイベントカメラをベースとした7種類のオブジェクト追跡手法と,ETDの2種類のバリエーションを比較した。
論文 参考訳(メタデータ) (2020-02-13T15:58:31Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
既存のイベント検出システムは、主に学習ベースであり、大量のトレーニングデータが利用可能な場合、十分なパフォーマンスを実現している。
現実のシナリオでは、十分なラベル付きトレーニングデータの収集は高価であり、時には不可能である。
本稿では,交通監視のためのトレーニング不要な単眼3Dイベント検出システムを提案する。
論文 参考訳(メタデータ) (2020-02-01T04:42:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。