論文の概要: Analyzing and Mitigating Object Hallucination: A Training Bias Perspective
- arxiv url: http://arxiv.org/abs/2508.04567v1
- Date: Wed, 06 Aug 2025 15:51:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.800728
- Title: Analyzing and Mitigating Object Hallucination: A Training Bias Perspective
- Title(参考訳): 物体の幻覚の分析と緩和--トレーニングバイアスの視点から
- Authors: Yifan Li, Kun Zhou, Wayne Xin Zhao, Lei Fang, Ji-Rong Wen,
- Abstract要約: 我々は,LVLMのトレーニングデータから,特定の対象を隠蔽した反ファクト画像からなる新しいベンチマークPOPEv2を提案する。
現在のLVLMはトレーニングバイアスに悩まされており、トレーニングデータを完全に活用できず、トレーニング中に見られる画像に対してより頻繁に幻覚を与えることができません。
Obliviateは,学習バイアスアンラーニングによる物体幻覚の軽減を目的とした,効率的で軽量な未学習手法である。
- 参考スコア(独自算出の注目度): 108.09666587800781
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As scaling up training data has significantly improved the general multimodal capabilities of Large Vision-Language Models (LVLMs), they still suffer from the hallucination issue, generating text that is inconsistent with the visual input. This phenomenon motivates us to systematically investigate the role of training data in hallucination. We introduce a new benchmark, POPEv2, which consists of counterfactual images collected from the training data of LVLMs with certain objects masked. Through comprehensive evaluation on POPEv2, we find that current LVLMs suffer from training bias: they fail to fully leverage their training data and hallucinate more frequently on images seen during training. Specifically, they perform poorly on counterfactual images, often incorrectly answering ``Yes'' to questions about masked objects. To understand this issue, we conduct probing experiments on the models' internal components, revealing that this training bias is primarily located in the language modeling (LM) head. Based on these findings, we propose Obliviate, an efficient and lightweight unlearning method designed to mitigate object hallucination via training bias unlearning. Obliviate identifies the discrepancy between ground-truth labels and model outputs on the training data as a proxy for bias and adopts a parameter- and data-efficient fine-tuning strategy that only updates the LM head. Extensive experiments demonstrate the effectiveness of our approach. While only reusing the training data and updating approximately 2\% of the parameters, Obliviate significantly reduces hallucination across both discriminative and generative tasks. Furthermore, it demonstrates strong scalability with respect to both model size (2B to 72B) and training data volume, and exhibits promising generalization to hallucination types beyond object-level hallucination. Our code and data will be publicly released.
- Abstract(参考訳): トレーニングデータのスケールアップにより、LVLM(Large Vision-Language Models)の一般的なマルチモーダル機能が大幅に向上した。
この現象は、幻覚におけるトレーニングデータの役割を体系的に研究する動機となっている。
我々は,LVLMのトレーニングデータから,特定の対象を隠蔽した反ファクト画像からなる新しいベンチマークPOPEv2を提案する。
POPEv2の総合的な評価により、現在のLVLMはトレーニングバイアスに悩まされていることが判明した。
特に、偽造画像では不十分であり、しばしばマスクされた物体に関する質問に対して「Yes」を誤って答える。
この問題を理解するため、我々はモデルの内部コンポーネントの探索実験を行い、このトレーニングバイアスが主に言語モデリング(LM)ヘッド内にあることを明らかにした。
これらの知見に基づいて,学習バイアスの未学習による物体幻覚の軽減を目的とした,効率的で軽量な未学習手法であるObliviateを提案する。
Obliviateは、トレーニングデータ上の基底構造ラベルとモデル出力の相違をバイアスのプロキシとして特定し、LMヘッドのみを更新するパラメータとデータ効率の微調整戦略を採用する。
大規模な実験は、我々のアプローチの有効性を実証する。
トレーニングデータのみを再利用し、パラメータの約2倍の更新を行う一方で、Obliviateは識別的タスクと生成的タスクの両方にわたる幻覚を著しく低減する。
さらに、モデルサイズ(2Bから72B)とトレーニングデータボリュームの両方に関して強力なスケーラビリティを示し、オブジェクトレベルの幻覚を超えた幻覚への有望な一般化を示す。
コードとデータは公開されます。
関連論文リスト
- OViP: Online Vision-Language Preference Learning [26.54737360667123]
大型視覚言語モデル(LVLM)は幻覚に弱いままであり、しばしば視覚入力と一致しないコンテンツを生成する。
本稿では,モデル独自の幻覚出力に基づいて,コントラスト学習データを動的に構築するオンラインビジョン言語嗜好学習フレームワークを提案する。
幻覚と一般的なベンチマークの実験は、OViPがコアマルチモーダル能力を保ちながら幻覚を効果的に減少させることを示した。
論文 参考訳(メタデータ) (2025-05-21T19:26:09Z) - HalluLens: LLM Hallucination Benchmark [49.170128733508335]
大規模言語モデル(LLM)は、しばしばユーザ入力やトレーニングデータから逸脱する応答を生成する。
本稿では,新たな内因性評価タスクと既存内因性評価タスクを併用した総合幻覚ベンチマークを提案する。
論文 参考訳(メタデータ) (2025-04-24T13:40:27Z) - FiVL: A Framework for Improved Vision-Language Alignment through the Lens of Training, Evaluation and Explainability [10.184567639685321]
本稿では,LVLMを学習するための新しいデータセット構築手法であるFiVLを紹介する。
本稿では,モデルがイメージを実体的証拠として用いる能力を評価するためのベンチマークを示す。
視覚による幻覚を説明できる最強の視覚言語アライメントで注目頭を特定する。
論文 参考訳(メタデータ) (2024-12-19T09:24:10Z) - Pre-Training Multimodal Hallucination Detectors with Corrupted Grounding Data [4.636499986218049]
マルチモーダル言語モデルは、その出力に幻覚を示し、信頼性を制限できる。
本稿では, 崩壊した地盤データを作成することにより, これらのモデルのサンプル効率を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-08-30T20:11:00Z) - Training Language Models on the Knowledge Graph: Insights on Hallucinations and Their Detectability [83.0884072598828]
幻覚は多くの形式があり、普遍的に受け入れられる定義はない。
トレーニングセットにおいて、正しい回答が冗長に現れるような幻覚のみを研究することに集中する。
固定されたデータセットの場合、より大きく長く訓練されたLMは幻覚を少なくする。
固定されたLMの出力の検出器サイズが向上するのに対して、LMのスケールと幻覚の検出可能性との間には逆の関係がある。
論文 参考訳(メタデータ) (2024-08-14T23:34:28Z) - The First to Know: How Token Distributions Reveal Hidden Knowledge in Large Vision-Language Models? [34.27319941609499]
本研究では線形プローブを用いてLVLMの出力層における隠れた知識を隠蔽する。
本報告では,最初のトークンのロジット分布は命令に応答するかどうかを決定するのに十分な情報を含んでいることを示す。
論文 参考訳(メタデータ) (2024-03-14T02:25:35Z) - Less is More: Mitigating Multimodal Hallucination from an EOS Decision Perspective [55.41815486466186]
大規模なマルチモーダルモデル(LMM)は、視覚的な入力に存在しないコンテンツを生成するため、しばしば多モーダル幻覚に悩まされる。
本稿では,モデルが生成をタイムリーに終了する能力を阻害する,過度に詳細なトレーニングデータについて検討する。
生成したテキストと画像を比較し,シーケンス全体の完全性を評価する。
論文 参考訳(メタデータ) (2024-02-22T13:33:13Z) - Aligning Modalities in Vision Large Language Models via Preference
Fine-tuning [67.62925151837675]
本研究では,幻覚の問題をアライメント問題とみなし,好みのチューニングで対処する。
具体的には,AIモデルを用いたフィードバックデータを生成するPOVIDを提案する。
提案手法は,好ましくないデータを生成するための2段階のアプローチである。
広範ベンチマークを用いた実験では、幻覚を減らすだけでなく、標準ベンチマークでのモデル性能を向上させることができ、従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-02-18T00:56:16Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
機械生成データに固有の幻覚は未発見のままである。
本稿では,クロスチェックパラダイムに基づく新しい幻覚検出・除去フレームワークであるHaluciDoctorを提案する。
LLaVAに比べて44.6%の幻覚を緩和し,競争性能を維持した。
論文 参考訳(メタデータ) (2023-11-22T04:52:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。