Quantum Imaging Using Spatially Entangled Photon Pairs from a Nonlinear Metasurface
- URL: http://arxiv.org/abs/2408.02903v1
- Date: Tue, 6 Aug 2024 02:25:34 GMT
- Title: Quantum Imaging Using Spatially Entangled Photon Pairs from a Nonlinear Metasurface
- Authors: Jinyong Ma, Jinliang Ren, Jihua Zhang, Jiajun Meng, Caitlin McManus-Barrett, Kenneth B. Crozier, Andrey A. Sukhorukov,
- Abstract summary: metasurfaces with subwavelength thickness were recently established as versatile platforms for the enhanced and tailorable generation of entangled photon pairs.
Here, we demonstrate the unique benefits and practical potential of nonlinear metasurfaces for quantum imaging at infrared wavelengths.
We reconstruct the images of 2D objects using just a 1D detector array in the idler path and a bucket detector in the signal path, by recording the dependencies of photon coincidences on the pump wavelength.
- Score: 0.4188114563181615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nonlinear metasurfaces with subwavelength thickness were recently established as versatile platforms for the enhanced and tailorable generation of entangled photon pairs. The small dimensions and inherent stability of integrated metasurface sources are attractive for free-space applications in quantum communications, sensing, and imaging, yet this remarkable potential remained unexplored. Here, we formulate and experimentally demonstrate the unique benefits and practical potential of nonlinear metasurfaces for quantum imaging at infrared wavelengths, facilitating an efficient protocol combining ghost and all-optical scanning imaging. The metasurface incorporates a subwavelength-scale silica metagrating on a lithium niobate thin film. Its distinguishing feature is the capability to all-optically scan the photon emission angle in the direction across the grating simply by tuning the pump beam wavelength. Simultaneously, the photon emission is broad and anti-correlated along the grating direction, allowing for ghost imaging. Thereby, we reconstruct the images of 2D objects using just a 1D detector array in the idler path and a bucket detector in the signal path, by recording the dependencies of photon coincidences on the pump wavelength. Our results reveal new possibilities for quantum imaging with ultra-large field of view and improved imaging resolution as compared to photon pairs from conventional bulky crystals. The demonstrated concept can be extended to multi-wavelength operation and other applications such as quantum object tracking, paving the way for advancements in quantum technologies using ultra-compact nanostructured metasurfaces.
Related papers
- Tunable generation of spatial entanglement in nonlinear waveguide arrays [0.0]
spatially entangled photon pairs based on parametric down-conversion in AlGaAs nonlinear waveguides arrays.
We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations.
This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems.
arXiv Detail & Related papers (2024-05-13T20:55:54Z) - Super-resolved snapshot hyperspectral imaging of solid-state quantum
emitters for high-throughput integrated quantum technologies [2.369149909203103]
We introduce the concept of hyperspectral imaging in quantum optics, for the first time, to address such a long-standing issue.
With the extracted quantum dot positions and emission wavelengths, surface-emitting quantum light sources and in-plane photonic circuits can be deterministically fabricated.
Our work is expected to change the landscape of integrated quantum photonic technology.
arXiv Detail & Related papers (2023-11-05T11:51:22Z) - Photon pair generation from lithium niobate metasurface with tunable
spatial entanglement [0.0]
Two-photon state with spatial entanglement is an essential resource for testing fundamental laws of quantum mechanics.
Here, we predict that ultrathin nonlinear lithium niobate metasurfaces can generate and diversely tune spatially entangled photon pairs.
arXiv Detail & Related papers (2023-08-31T03:58:24Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Efficient Generation of Subnatural-Linewidth Biphotons by Controlled
Quantum Interference [0.9877468274612591]
Biphotons of narrow bandwidth and long temporal length play a crucial role in long-distance quantum communication.
By manipulating the two-component biphoton wavefunction, we demonstrate biphotons with subnatural linewidth in the sub-MHz regime.
Our work has potential applications in realizing quantum repeaters and large cluster states for LDQC and LOQC.
arXiv Detail & Related papers (2020-09-09T02:39:50Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z) - On-chip deterministic operation of quantum dots in dual-mode waveguides
for a plug-and-play single-photon source [0.0]
A deterministic source of coherent single photons is an enabling device of quantum-information processing.
We present a novel nanophotonic device that enables deterministic pulsed excitation of QDs through the waveguide.
We demonstrate a coherent single-photon source that simultaneously achieves high-purity.
arXiv Detail & Related papers (2020-01-29T08:09:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.