Optimizing quantum transport via the quantum Doob transform
- URL: http://arxiv.org/abs/2508.04622v1
- Date: Wed, 06 Aug 2025 16:48:48 GMT
- Title: Optimizing quantum transport via the quantum Doob transform
- Authors: Dolores Esteve, Carlos Pérez-Espigares, Ricardo Gutiérrez, Daniel Manzano,
- Abstract summary: Quantum transport plays a central role in both fundamental physics and the development of quantum technologies.<n>We introduce a novel method that extends this approach to quantum networks.<n>We show that optimal performance arises from non-trivial modifications to both coherent and incoherent dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum transport plays a central role in both fundamental physics and the development of quantum technologies. While significant progress has been made in understanding transport phenomena in quantum systems, methods for optimizing transport properties remain limited, particularly in complex quantum networks. Building on recent advances in classical network optimization via the generalized Doob transform, we introduce a novel method that extends this approach to quantum networks. Our framework leverages a single diagonalization of the system generator to efficiently tailor both the Hamiltonian and dissipative contributions, optimizing transport observables such as currents and activities. We demonstrate the method's effectiveness through extensive numerical explorations, showing that optimal performance arises from non-trivial modifications to both coherent and incoherent dynamics. We also assess the robustness of the optimization under constraints that preserve specific physical features, such as fixed dissipative structures and input-output interactions. Finally, we discuss the connection between optimized transport and centrosymmetry, highlighting the relevance of this property for enhanced transport efficiency in quantum systems.
Related papers
- Flowing Through Hilbert Space: Quantum-Enhanced Generative Models for Lattice Field Theory [0.9208007322096533]
We develop a hybrid quantum-classical normalizing flow model to explore quantum-enhanced sampling in such regimes.<n>Our approach embeds parameterized quantum circuits within a classical normalizing flow architecture, leveraging amplitude encoding and quantum entanglement to enhance expressivity in the generative process.
arXiv Detail & Related papers (2025-05-15T17:58:16Z) - Surrogate-guided optimization in quantum networks [0.9148747049384086]
We propose an optimization algorithm to improve the design and performance of quantum communication networks.
Our framework allows for more comprehensive quantum network studies, integrating surrogate-assisted optimization with existing quantum network simulators.
arXiv Detail & Related papers (2024-07-24T11:55:18Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Enhancing Quantum Annealing via entanglement distribution [1.1470070927586018]
Quantum Annealing has proven to be a powerful tool to tackle several optimization problems.
Its performance is severely impacted by the limited connectivity of the underlying quantum hardware.
We present a novel approach to address these issues, by describing a method to implement non-local couplings.
arXiv Detail & Related papers (2022-12-05T18:18:58Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Non-Markovianity between site-pairs in FMO complex using discrete-time
quantum jump model [3.0715281567279153]
We show the presence of higher non-Markovian memory effects in specific site-pairs when internal structures and environmental effects are in favour of faster transport.
Our study leans towards the connection between non-Markovianity in quantum jumps with the enhancement of transport efficiency.
arXiv Detail & Related papers (2022-09-02T12:49:09Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Transfer-matrix summation of path integrals for transport through
nanostructures [62.997667081978825]
We develop a transfer-matrix method to describe the nonequilibrium properties of interacting quantum-dot systems.
The method is referred to as "transfer-matrix summation of path integrals" (TraSPI)
arXiv Detail & Related papers (2022-08-16T09:13:19Z) - Quantum trajectories, interference, and state localisation in dephasing
assisted quantum transport [0.0]
We present a simple and unified understanding of the role of these two key dephasing processes in dephasing assisted transport.
Our results provide insight in understanding quantum transport in molecular semiconductors, artificial lattices and quantum features of excitonic solids.
arXiv Detail & Related papers (2021-11-04T16:35:36Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.