Surrogate-guided optimization in quantum networks
- URL: http://arxiv.org/abs/2407.17195v1
- Date: Wed, 24 Jul 2024 11:55:18 GMT
- Title: Surrogate-guided optimization in quantum networks
- Authors: Luise Prielinger, Álvaro G. Iñesta, Gayane Vardoyan,
- Abstract summary: We propose an optimization algorithm to improve the design and performance of quantum communication networks.
Our framework allows for more comprehensive quantum network studies, integrating surrogate-assisted optimization with existing quantum network simulators.
- Score: 0.9148747049384086
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an optimization algorithm to improve the design and performance of quantum communication networks. When physical architectures become too complex for analytical methods, numerical simulation becomes essential to study quantum network behavior. Although highly informative, these simulations involve complex numerical functions without known analytical forms, making traditional optimization techniques that assume continuity, differentiability, or convexity inapplicable. Additionally, quantum network simulations are computationally demanding, rendering global approaches like Simulated Annealing or genetic algorithms, which require extensive function evaluations, impractical. We introduce a more efficient optimization workflow using machine learning models, which serve as surrogates for a given objective function. We demonstrate the effectiveness of our approach by applying it to three well-known optimization problems in quantum networking: quantum memory allocation for multiple network nodes, tuning an experimental parameter in all physical links of a quantum entanglement switch, and finding efficient protocol settings within a large asymmetric quantum network. The solutions found by our algorithm consistently outperform those obtained with our baseline approaches -- Simulated Annealing and Bayesian optimization -- in the allotted time limit by up to 18\% and 20\%, respectively. Our framework thus allows for more comprehensive quantum network studies, integrating surrogate-assisted optimization with existing quantum network simulators.
Related papers
- Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Feasible Architecture for Quantum Fully Convolutional Networks [4.849886707973093]
We propose a feasible pure quantum architecture that can be operated on noisy intermediate-scale quantum devices.
Our study represents the successful training of a pure quantum fully convolutional network and discusses advantages by comparing it with the hybrid solution.
arXiv Detail & Related papers (2021-10-05T01:06:54Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.