論文の概要: Lightweight Transformers for Zero-Shot and Fine-Tuned Text-to-SQL Generation Using Spider
- arxiv url: http://arxiv.org/abs/2508.04623v1
- Date: Wed, 06 Aug 2025 16:49:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.829833
- Title: Lightweight Transformers for Zero-Shot and Fine-Tuned Text-to-SQL Generation Using Spider
- Title(参考訳): スパイダーを用いたゼロショット・微調整テキスト・トゥ・SQL生成用軽量変圧器
- Authors: Chirag Seth, Utkarsh Singh,
- Abstract要約: 本研究では、スパイダーデータセット上の3つの軽量トランスモデル(T5-Small、BART-Small、GPT-2)を評価する。
再利用可能なモデルに依存しないパイプラインを開発し、各モデルのアーキテクチャに合わせてスキーマのフォーマットを調整しました。
- 参考スコア(独自算出の注目度): 2.1178416840822027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-SQL translation enables non-expert users to query relational databases using natural language, with applications in education and business intelligence. This study evaluates three lightweight transformer models - T5-Small, BART-Small, and GPT-2 - on the Spider dataset, focusing on low-resource settings. We developed a reusable, model-agnostic pipeline that tailors schema formatting to each model's architecture, training them across 1000 to 5000 iterations and evaluating on 1000 test samples using Logical Form Accuracy (LFAcc), BLEU, and Exact Match (EM) metrics. Fine-tuned T5-Small achieves the highest LFAcc (27.8%), outperforming BART-Small (23.98%) and GPT-2 (20.1%), highlighting encoder-decoder models' superiority in schema-aware SQL generation. Despite resource constraints limiting performance, our pipeline's modularity supports future enhancements, such as advanced schema linking or alternative base models. This work underscores the potential of compact transformers for accessible text-to-SQL solutions in resource-scarce environments.
- Abstract(参考訳): テキストからSQLへの変換により、非専門家のユーザが自然言語を使ってリレーショナルデータベースをクエリでき、教育やビジネスインテリジェンスに応用できる。
本研究では,Spiderデータセット上でT5-Small,BART-Small,GPT-2の3つの軽量トランスモデルを評価する。
私たちは、各モデルのアーキテクチャにスキーマフォーマットを適合させる再利用可能なモデルに依存しないパイプラインを開発し、1000から5000回のイテレーションでそれらをトレーニングし、論理形式精度(LFAcc)、BLEU、Exact Match(EM)メトリクスを使用して1000のテストサンプルを評価しました。
微調整のT5-Smallは、最高LFAcc (27.8%)、BART-Small (23.98%)、GPT-2 (20.1%)を上回り、スキーマ対応SQL生成におけるエンコーダ-デコーダモデルの優位性を強調している。
リソースの制約によるパフォーマンスの制限にもかかわらず、パイプラインのモジュール性は、高度なスキーマリンクや代替ベースモデルなどの将来の拡張をサポートします。
この研究は、リソーススカース環境でアクセス可能なテキスト-SQLソリューションのためのコンパクトトランスフォーマーの可能性を強調している。
関連論文リスト
- Auto prompt sql: a resource-efficient architecture for text-to-sql translation in constrained environments [6.2022166353084485]
本稿では,リソース効率の良い小型オープンソースモデルと,テキスト翻訳のための大規模クローズドソースモデルの強力な機能とのギャップを埋めるために設計された,新しいアーキテクチャであるAuto Promptsql(AP-)を紹介する。
論文 参考訳(メタデータ) (2025-06-04T06:04:46Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
ベンチマークの結果,オープンソースのソリューション間でのSOTA実行精度は67.2%,BIRDは87.9%,GPT-4オクルージョンは87.9%であった。
提案手法は,DeepSeekを同一のプロンプトで適用した場合,GPT-4ベースのテキスト・ツー・シークシステムよりも優れている。
論文 参考訳(メタデータ) (2024-10-31T16:22:26Z) - Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-sにより、専門家でないユーザは、自然言語クエリを使用してデータベースから要求された情報を取得することができる。
GPT4やT5のような現在の最先端(SOTA)モデルは、BIRDのような大規模ベンチマークで素晴らしいパフォーマンスを示している。
本稿では,テキスト・ツー・ス・パフォーマンスを向上させるためにSQL Qualityのみを必要とする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T17:21:51Z) - Synthesizing Text-to-SQL Data from Weak and Strong LLMs [68.69270834311259]
オープンソースとクローズドソースの大規模言語モデル(LLM)の能力ギャップは、テキスト・トゥ・タスクにおいて依然として課題である。
より大規模で強力なモデルによって生成されたデータと、より小さく、不整合なモデルによって生成されたエラー情報データを組み合わせた合成データアプローチを導入する。
論文 参考訳(メタデータ) (2024-08-06T15:40:32Z) - DFIN-SQL: Integrating Focused Schema with DIN-SQL for Superior Accuracy
in Large-Scale Databases [0.0]
本稿では,DIN-composed (Decomposed-In-Context) の革新的な拡張であるDFINを紹介する。
DFINは、不正確な主要なソースであるスキーマリンクエラーに対処することで、テキストからコンポジションへの変換を強化する。
実世界の挑戦的なベンチマークであるBIRDデータセットの評価では、DFINは効率だけでなく精度も向上し、51.69のスコアが得られた。
論文 参考訳(メタデータ) (2024-03-01T07:14:45Z) - CodeS: Towards Building Open-source Language Models for Text-to-SQL [42.11113113574589]
1Bから15Bまでのパラメータを持つ事前学習言語モデルであるCodeSを紹介する。
CodeSは完全にオープンな言語モデルであり、パラメータサイズをはるかに小さくすることで精度が向上する。
我々は、広く使われているスパイダーベンチマークを含む、複数のデータセットの包括的な評価を行う。
論文 参考訳(メタデータ) (2024-02-26T07:00:58Z) - Fine-Tuning Language Models for Context-Specific SQL Query Generation [0.0]
本稿では,自然言語を tosql クエリに変換するタスクに対して,オープンソースの大規模言語モデル (LLM) を微調整する新しい手法を提案する。
我々は、Snowflake SQLとGoogleの方言に合わせて、合成データセットに基づいて訓練されたsqlクエリ生成に特化したモデルを紹介する。
提案手法では,GPT-4を用いてコンテキスト固有のデータセットを生成し,リソース制約を最適化するためにLoRa技術を用いて3つのオープンソースLCM(Starcoder Plus,Code-Llama,Mistral)を微調整する。
微調整モデルでは、ベースラインGPと比較してゼロショット設定では優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-04T18:04:27Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - Graphix-T5: Mixing Pre-Trained Transformers with Graph-Aware Layers for
Text-to-SQL Parsing [56.232873134174056]
テキストからテキストへのパースにおける大きな課題の1つはドメインの一般化である。
そこで本研究では,テキスト・トゥ・テキスト・パーシングのための特殊なコンポーネントを備えた事前学習されたテキスト・ツー・テキスト・トランスフォーマー・モデルをさらに強化する方法について検討する。
この目的のために,レイヤを持つグラフ認識モデルによって拡張された新しいアーキテクチャ GRAPHIX-T5 を提案する。
論文 参考訳(メタデータ) (2023-01-18T13:29:05Z) - Importance of Synthesizing High-quality Data for Text-to-SQL Parsing [71.02856634369174]
最先端のテキストから重み付けアルゴリズムは、強化された合成データでトレーニングされた場合、一般的なベンチマークでは改善されなかった。
本稿では,スキーマから重要な関係を取り入れ,強い型付けを課し,スキーマ重み付きカラムサンプリングを行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-17T02:53:21Z) - Learning Contextual Representations for Semantic Parsing with
Generation-Augmented Pre-Training [86.91380874390778]
本稿では,生成モデルを活用して事前学習データを生成することで,自然言語発話と表スキーマの表現を共同で学習するGAPを提案する。
実験結果に基づいて、GAP MODELを利用するニューラルセマンティクスは、SPIDERとCRITERIA-to-generationベンチマークの両方で最新の結果を得る。
論文 参考訳(メタデータ) (2020-12-18T15:53:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。