論文の概要: RetinexDual: Retinex-based Dual Nature Approach for Generalized Ultra-High-Definition Image Restoration
- arxiv url: http://arxiv.org/abs/2508.04797v1
- Date: Wed, 06 Aug 2025 18:15:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 21:11:55.638079
- Title: RetinexDual: Retinex-based Dual Nature Approach for Generalized Ultra-High-Definition Image Restoration
- Title(参考訳): RetinexDual:Retinex-based Dual Nature Approach for Generalized Ultra-High-Definition Image Restoration (特集:情報科学)
- Authors: Mohab Kishawy, Ali Abdellatif Hussein, Jun Chen,
- Abstract要約: RetinexDualは、一般化された超高精細画像復元(UHD IR)タスクのために設計された、Retinex理論に基づく新しいフレームワークである。
我々は、4つのUHD IRタスク、すなわちデラニング、デブロアリング、デハージング、低照度画像強調(LLIE)についてRetinexDualを評価する。
- 参考スコア(独自算出の注目度): 5.075864600930347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in image sensing have elevated the importance of Ultra-High-Definition Image Restoration (UHD IR). Traditional methods, such as extreme downsampling or transformation from the spatial to the frequency domain, encounter significant drawbacks: downsampling induces irreversible information loss in UHD images, while our frequency analysis reveals that pure frequency-domain approaches are ineffective for spatially confined image artifacts, primarily due to the loss of degradation locality. To overcome these limitations, we present RetinexDual, a novel Retinex theory-based framework designed for generalized UHD IR tasks. RetinexDual leverages two complementary sub-networks: the Scale-Attentive maMBA (SAMBA) and the Frequency Illumination Adaptor (FIA). SAMBA, responsible for correcting the reflectance component, utilizes a coarse-to-fine mechanism to overcome the causal modeling of mamba, which effectively reduces artifacts and restores intricate details. On the other hand, FIA ensures precise correction of color and illumination distortions by operating in the frequency domain and leveraging the global context provided by it. Evaluating RetinexDual on four UHD IR tasks, namely deraining, deblurring, dehazing, and Low-Light Image Enhancement (LLIE), shows that it outperforms recent methods qualitatively and quantitatively. Ablation studies demonstrate the importance of employing distinct designs for each branch in RetinexDual, as well as the effectiveness of its various components.
- Abstract(参考訳): 画像センシングの進歩は、UHD IR(Ultra-High-Definition Image Restoration)の重要性を高めている。
ダウンサンプリングはUHD画像における不可逆的な情報損失を誘導するが、周波数分析では、分解局所性の喪失が主な原因で、空間的に制限された画像アーティファクトに対して純粋な周波数領域アプローチが有効でないことが判明した。
これらの制約を克服するために、一般化されたUHD IRタスク用に設計されたRetinex理論に基づく新しいフレームワークであるRetinexDualを提案する。
RetinexDual は Scale-Attentive maMBA (SAMBA) と Frequency Illumination Adaptor (FIA) の2つの補完サブネットワークを利用している。
SAMBAは反射成分の補正を担当しており、マムバの因果モデリングを克服するために粗い機構を利用して、人工物を効果的に減らし、複雑な詳細を復元する。
一方、FIAは周波数領域を演算し、それが提供するグローバルコンテキストを活用することにより、色と照明の歪みを正確に補正する。
UHD IRの4つのタスク、すなわちデラニング、デブロアリング、デハージング、低光画像強調(LLIE)におけるRetinexDualの評価は、最近の手法を質的かつ定量的に上回っていることを示している。
アブレーション研究は、RetinexDualの各ブランチに異なる設計を採用することの重要性と、その様々なコンポーネントの有効性を示す。
関連論文リスト
- One-Step Diffusion-based Real-World Image Super-Resolution with Visual Perception Distillation [53.24542646616045]
画像超解像(SR)生成に特化して設計された新しい視覚知覚拡散蒸留フレームワークであるVPD-SRを提案する。
VPD-SRは2つのコンポーネントから構成される: 明示的セマンティック・アウェア・スーパービジョン(ESS)と高周波知覚(HFP)損失。
提案したVPD-SRは,従来の最先端手法と教師モデルの両方と比較して,たった1ステップのサンプリングで優れた性能が得られる。
論文 参考訳(メタデータ) (2025-06-03T08:28:13Z) - FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
本稿では、新しい任意スケール超解像法であるFreqINR(FreqINR)について述べる。
トレーニングでは,適応離散コサイン変換周波数損失(adaptive Discrete Cosine Transform Frequency Loss,ADFL)を用いて,HR画像と地絡画像の周波数ギャップを最小化する。
推論の際には,低分解能(LR)画像と地軸画像のスペクトルコヒーレンスを維持するために受容場を拡張した。
論文 参考訳(メタデータ) (2024-08-25T03:53:17Z) - HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved
Diffusion Models [38.74983301496911]
ハイパースペクトル画像(HSI)の復元は、劣化した観察からクリーンなイメージを復元することを目的としている。
既存のモデルに基づく手法は、複雑な画像の特徴を正確にモデル化するのに限界がある。
本稿では,事前学習拡散モデル(HIR-Diff)を用いた教師なしHSI復元フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-24T17:15:05Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
照明劣化画像復元(IDIR)技術は、劣化した画像の視認性を改善し、劣化した照明の悪影響を軽減することを目的としている。
これらのアルゴリズムのうち、拡散モデル(DM)に基づく手法は期待できる性能を示しているが、画像レベルの分布を予測する際に、重い計算要求や画素の不一致の問題に悩まされることが多い。
我々は、コンパクトな潜在空間内でDMを活用して、簡潔な指導先を生成することを提案し、IDIRタスクのためのReti-Diffと呼ばれる新しいソリューションを提案する。
Reti-Diff は Retinex-based Latent DM (RLDM) と Retinex-Guided Transformer (RG) の2つの鍵成分からなる。
論文 参考訳(メタデータ) (2023-11-20T09:55:06Z) - Texture and Noise Dual Adaptation for Infrared Image Super-Resolution [7.310003050012592]
ターゲット指向ドメイン適応SRGAN(DASRGAN)は、ロバストIR超解像モデル適応のための革新的なフレームワークである。
DASRGANは,(1)テクスチャを微妙に洗練するためのテクスチャ指向適応 (TOA) と,(2)ノイズ指向適応 (NOA) の2つの主要成分の相乗効果を利用する。
論文 参考訳(メタデータ) (2023-11-15T09:35:07Z) - Unpaired Optical Coherence Tomography Angiography Image Super-Resolution via Frequency-Aware Inverse-Consistency GAN [6.717440708401628]
本稿では,GANに基づくOCTA画像の非ペア化超解像法を提案する。
また,再構成画像の正確なスペクトル化を容易にするため,識別器の周波数認識による逆方向の損失も提案する。
実験により,本手法は,他の最先端の未経験手法よりも定量的,視覚的に優れていることが示された。
論文 参考訳(メタデータ) (2023-09-29T14:19:51Z) - Holistic Dynamic Frequency Transformer for Image Fusion and Exposure Correction [18.014481087171657]
露出関連問題の修正は、画像の品質向上における重要な要素である。
本稿では、周波数領域を利用して露出補正タスクの処理を改善し、統一する新しい手法を提案する。
提案手法は, 露光補正においてより高度で統一された解を実現する方法である。
論文 参考訳(メタデータ) (2023-09-03T14:09:14Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
ブラインド顔復元は通常、トレーニングのための事前定義された劣化モデルで劣化した低品質データを合成する。
トレーニングデータに現実のケースをカバーするために、あらゆる種類の劣化を含めることは、高価で実現不可能である。
本稿では、まず、劣化した画像を粗いが劣化不変な予測に変換し、次に、粗い予測を高品質な画像に復元するために拡張モジュールを使用するロバスト劣化再帰法(DR2)を提案する。
論文 参考訳(メタデータ) (2023-03-13T06:05:18Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - Focal Frequency Loss for Image Reconstruction and Synthesis [125.7135706352493]
周波数領域の狭さが画像再構成と合成品質をさらに改善できることを示す。
本稿では,合成が難しい周波数成分に適応的に焦点を合わせることのできる,新しい焦点周波数損失を提案する。
論文 参考訳(メタデータ) (2020-12-23T17:32:04Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。