論文の概要: FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss
- arxiv url: http://arxiv.org/abs/2408.13716v1
- Date: Sun, 25 Aug 2024 03:53:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:19:53.022721
- Title: FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss
- Title(参考訳): FreqINR:適応型DCT周波数損失を伴う入射神経表現の周波数整合性
- Authors: Meiyi Wei, Liu Xie, Ying Sun, Gang Chen,
- Abstract要約: 本稿では、新しい任意スケール超解像法であるFreqINR(FreqINR)について述べる。
トレーニングでは,適応離散コサイン変換周波数損失(adaptive Discrete Cosine Transform Frequency Loss,ADFL)を用いて,HR画像と地絡画像の周波数ギャップを最小化する。
推論の際には,低分解能(LR)画像と地軸画像のスペクトルコヒーレンスを維持するために受容場を拡張した。
- 参考スコア(独自算出の注目度): 5.349799154834945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in local Implicit Neural Representation (INR) demonstrate its exceptional capability in handling images at various resolutions. However, frequency discrepancies between high-resolution (HR) and ground-truth images, especially at larger scales, result in significant artifacts and blurring in HR images. This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method aimed at enhancing detailed textures by ensuring spectral consistency throughout both training and inference. During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images, utilizing 2-Dimensional DCT bases and focusing dynamically on challenging frequencies. During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images, which is crucial for the model to generate high-frequency details from LR counterparts. Experimental results show that FreqINR, as a lightweight approach, achieves state-of-the-art performance compared to existing Arbitrary-scale Super-resolution methods and offers notable improvements in computational efficiency. The code for our method will be made publicly available.
- Abstract(参考訳): Inlicit Neural Representation (INR)の最近の進歩は、様々な解像度で画像を扱う際、例外的な能力を示している。
しかし,高分解能画像(HR)と地中構造画像(特に大規模画像)の周波数差は,重要なアーティファクトとHR画像のぼやけを生じる。
本稿では、トレーニングと推論の両面でのコントラストの整合性を確保することによる、詳細なテクスチャの強化を目的とした、革新的な任意スケール超解像法であるFreqINRについて紹介する。
トレーニング中は、適応離散コサイン変換周波数損失(ADFL)を用いて、HRとグランドトラスト画像の周波数ギャップを最小化し、2次元DCTベースを使用し、挑戦周波数に動的に集中する。
推論の際には,低分解能(LR)画像とグランドトラス画像とのスペクトルコヒーレンスを維持するために受容場を拡張し,LR画像から高頻度の詳細を生成することが重要となる。
実験結果から,FreqINRは既存のArbitraryスケールの超解像法と比較して最先端の性能を実現し,計算効率を向上した。
私たちのメソッドのコードは公開されます。
関連論文リスト
- Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
スパース入力を用いた新しいビュー合成はニューラルラジアンス場(NeRF)に大きな課題をもたらす
近年の研究では、位置レンダリングの周波数規則化は、数発のNeRFに対して有望な結果が得られることが示されている。
我々は,AR-NeRFと呼ばれる数発のNeRFに対して適応レンダリング損失正規化を提案する。
論文 参考訳(メタデータ) (2024-10-23T13:05:26Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - Misalignment-Robust Frequency Distribution Loss for Image Transformation [51.0462138717502]
本稿では,画像強調や超解像といった深層学習に基づく画像変換手法における共通の課題に対処することを目的とする。
本稿では、周波数領域内における分布距離を計算するための、新しいシンプルな周波数分布損失(FDL)を提案する。
本手法は,周波数領域におけるグローバル情報の思慮深い活用により,トレーニング制約として実証的に有効であることが実証された。
論文 参考訳(メタデータ) (2024-02-28T09:27:41Z) - Unpaired Optical Coherence Tomography Angiography Image Super-Resolution
via Frequency-Aware Inverse-Consistency GAN [6.717440708401628]
本稿では,GANに基づくOCTA画像の非ペア化超解像法を提案する。
また,再構成画像の正確なスペクトル化を容易にするため,識別器の周波数認識による逆方向の損失も提案する。
実験により,本手法は,他の最先端の未経験手法よりも定量的,視覚的に優れていることが示された。
論文 参考訳(メタデータ) (2023-09-29T14:19:51Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - A Scale-Arbitrary Image Super-Resolution Network Using Frequency-domain
Information [42.55177009667711]
画像超解像(SR)は、低分解能(LR)画像において失われた高周波情報を復元する技術である。
本稿では、周波数領域における画像の特徴を考察し、新しいスケール・アービタリー画像SRネットワークを設計する。
論文 参考訳(メタデータ) (2022-12-08T15:10:49Z) - FreqNet: A Frequency-domain Image Super-Resolution Network with Dicrete
Cosine Transform [16.439669339293747]
単一画像超解像(SISR)は低分解能(LR)入力から高分解能(HR)出力を得ることを目的とした不適切な問題である。
高ピーク信号-雑音比(PSNR)の結果にもかかわらず、モデルが望まれる高周波の詳細を正しく付加するかどうかを判断することは困難である。
本稿では、周波数領域の観点から直感的なパイプラインであるFreqNetを提案し、この問題を解決する。
論文 参考訳(メタデータ) (2021-11-21T11:49:12Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
提案した損失関数の適用のみで,最近導入された効率的なジェネレータアーキテクチャの性能向上が可能であることを示す。
フーリエ空間における周波数に対する損失の直接的強調は知覚的画質を著しく向上させることを示す。
訓練されたジェネレータは、最先端の知覚的SR法である RankSRGAN と SRFlow よりも2.4倍、48倍高速である。
論文 参考訳(メタデータ) (2021-06-01T20:34:52Z) - Are High-Frequency Components Beneficial for Training of Generative
Adversarial Networks [11.226288436817956]
GAN(Generative Adversarial Networks)は、実際の画像と視覚的に区別できない現実的な画像を生成する能力を持つ。
画像スペクトルの最近の研究は、生成画像と実画像が高周波で有意な差を持つことを示した。
GAN訓練における高周波差を除去する2つの前処理手法を提案する。
論文 参考訳(メタデータ) (2021-03-20T04:37:06Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。