論文の概要: LuKAN: A Kolmogorov-Arnold Network Framework for 3D Human Motion Prediction
- arxiv url: http://arxiv.org/abs/2508.04847v1
- Date: Wed, 06 Aug 2025 19:50:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 21:11:55.642697
- Title: LuKAN: A Kolmogorov-Arnold Network Framework for 3D Human Motion Prediction
- Title(参考訳): LuKAN:3次元モーション予測のためのコルモゴロフ・アルノルドネットワークフレームワーク
- Authors: Md Zahidul Hasan, A. Ben Hamza, Nizar Bouguila,
- Abstract要約: 人間の3D動作予測の目的は、過去の動きデータに基づいて、人体の将来的な3Dポーズを予測することである。
本稿では,Lucas アクティベーションを備えた Kolmogorov-Arnold Networks (KANs) に基づく効果的なモデルである LuKAN を提案する。
- 参考スコア(独自算出の注目度): 22.73600190235369
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The goal of 3D human motion prediction is to forecast future 3D poses of the human body based on historical motion data. Existing methods often face limitations in achieving a balance between prediction accuracy and computational efficiency. In this paper, we present LuKAN, an effective model based on Kolmogorov-Arnold Networks (KANs) with Lucas polynomial activations. Our model first applies the discrete wavelet transform to encode temporal information in the input motion sequence. Then, a spatial projection layer is used to capture inter-joint dependencies, ensuring structural consistency of the human body. At the core of LuKAN is the Temporal Dependency Learner, which employs a KAN layer parameterized by Lucas polynomials for efficient function approximation. These polynomials provide computational efficiency and an enhanced capability to handle oscillatory behaviors. Finally, the inverse discrete wavelet transform reconstructs motion sequences in the time domain, generating temporally coherent predictions. Extensive experiments on three benchmark datasets demonstrate the competitive performance of our model compared to strong baselines, as evidenced by both quantitative and qualitative evaluations. Moreover, its compact architecture coupled with the linear recurrence of Lucas polynomials, ensures computational efficiency.
- Abstract(参考訳): 人間の3D動作予測の目的は、過去の動きデータに基づいて、人体の将来的な3Dポーズを予測することである。
既存の手法は予測精度と計算効率のバランスをとる際にしばしば限界に直面している。
本稿では,ルーカス多項式を活性化したコルモゴロフ・アルノルドネットワーク(KAN)に基づく実効モデルであるLuKANを提案する。
我々のモデルではまず離散ウェーブレット変換を適用して、入力動作シーケンスの時間情報を符号化する。
次に、空間投影層を用いて、接合部間の依存関係を捕捉し、人体の構造的整合性を確保する。
LuKANのコアとなるテンポラル依存学習器は、効率的な関数近似のためにルーカス多項式によってパラメータ化されたkan層を用いる。
これらの多項式は、計算効率と振動挙動を扱う能力を向上させる。
最後に、逆離散ウェーブレット変換は、時間領域の動作シーケンスを再構成し、時間的コヒーレントな予測を生成する。
3つのベンチマークデータセットに対する大規模な実験は、定量評価と定性評価の両方で証明されているように、強いベースラインと比較して、我々のモデルの競争性能を示す。
さらに、そのコンパクトなアーキテクチャは、ルーカス多項式の線形再帰と相まって、計算効率が保証される。
関連論文リスト
- StarPose: 3D Human Pose Estimation via Spatial-Temporal Autoregressive Diffusion [29.682018018059043]
StarPoseは3次元人間のポーズ推定のための自己回帰拡散フレームワークである。
歴史的3Dポーズの予測と空間的物理的ガイダンスが組み込まれている。
人間の3次元ポーズ推定における精度と時間的一貫性を向上する。
論文 参考訳(メタデータ) (2025-08-04T04:50:05Z) - Spectral Compression Transformer with Line Pose Graph for Monocular 3D Human Pose Estimation [1.8999296421549172]
本稿では,SCT(Spectral Compression Transformer)を導入し,シーケンス長を削減し,計算を高速化する。
LPGは、入力された2D関節位置を補完する骨格位置情報を生成する。
本モデルでは,計算効率を向上し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2025-05-27T15:08:03Z) - 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
既存の方法は、角度や四元数を用いて空間領域でパラメータ化された3次元回転を学習する。
本稿では,3次元回転回帰のためのWigner-D係数を直接予測する周波数領域アプローチを提案する。
提案手法は, ModelNet10-SO(3) や PASCAL3D+ などのベンチマーク上での最先端結果を実現する。
論文 参考訳(メタデータ) (2024-11-01T12:50:38Z) - StackFLOW: Monocular Human-Object Reconstruction by Stacked Normalizing Flow with Offset [56.71580976007712]
本研究では,人間のメッシュと物体メッシュの表面から密にサンプリングされたアンカー間の人物体オフセットを用いて,人物体空間関係を表現することを提案する。
この表現に基づいて、画像から人・物間の空間関係の後方分布を推定するスタック正規化フロー(StackFLOW)を提案する。
最適化段階では、サンプルの可能性を最大化することにより、人体ポーズと物体6Dポーズを微調整する。
論文 参考訳(メタデータ) (2024-07-30T04:57:21Z) - STGFormer: Spatio-Temporal GraphFormer for 3D Human Pose Estimation in Video [7.345621536750547]
本稿では,ビデオ中の3次元ポーズ推定のためのS-Temporal GraphFormerフレームワーク(STGFormer)を提案する。
まず,人体固有のグラフ分布をより効果的に活用するためのSTGアテンション機構を導入する。
次に、時間次元と空間次元を独立に並列に処理するための変調ホップワイド正規GCNを提案する。
最後に,Human3.6MおよびMPIINF-3DHPデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-07-14T06:45:27Z) - Graph and Skipped Transformer: Exploiting Spatial and Temporal Modeling Capacities for Efficient 3D Human Pose Estimation [36.93661496405653]
我々は、簡潔なグラフとSkipped Transformerアーキテクチャを用いて、Transformer-temporal情報を活用するためのグローバルなアプローチを採っている。
具体的には、3Dポーズの段階では、粗粒の体部が展開され、完全なデータ駆動適応モデルが構築される。
実験はHuman3.6M、MPI-INF-3DHP、Human-Evaベンチマークで行われた。
論文 参考訳(メタデータ) (2024-07-03T10:42:09Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
本研究では,人間のポーズの変形をモデル化し,それに伴う拡散に基づく動きを事前に設計する手法を提案する。
動作中の3次元人間の骨格を復元する作業は3次元基準骨格の推定に分割する。
混合時空間NASfMformerを用いて、各フレームの3次元基準骨格と骨格変形を2次元観測シーケンスから同時に推定する。
論文 参考訳(メタデータ) (2023-08-18T16:41:57Z) - TransFusion: A Practical and Effective Transformer-based Diffusion Model
for 3D Human Motion Prediction [1.8923948104852863]
本研究では,3次元動作予測のための革新的で実用的な拡散モデルであるTransFusionを提案する。
我々のモデルは、浅い層と深い層の間の長いスキップ接続を持つバックボーンとしてTransformerを活用している。
クロスアテンションや適応層正規化のような余分なモジュールを利用する従来の拡散モデルとは対照的に、条件を含む全ての入力をトークンとして扱い、より軽量なモデルを作成する。
論文 参考訳(メタデータ) (2023-07-30T01:52:07Z) - MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose
Estimation in Video [75.23812405203778]
近年, 学習時間相関のため, 全フレームのボディジョイントを世界規模で考慮し, 2次元キーポイントシーケンスから3次元人間のポーズを推定する手法が提案されている。
本研究では,各関節の時間的動きを別々にモデル化する時間的変圧器ブロックと,関節間空間相関を有する変圧器ブロックを有するミキシングミキシングを提案する。
さらに、ネットワーク出力は、中央フレームから入力ビデオの全フレームに拡張され、入力と出力のベンチマーク間のコヒーレンスが改善される。
論文 参考訳(メタデータ) (2022-03-02T04:20:59Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
本稿では,従来の推定値の修正に部分的レイヤを反復的に活用する,小さなディープニューラルネットワークを提案する。
学習したゲーティング基準を用いて、ウェイトシェアリングループから抜け出すかどうかを判断し、モデルにサンプルごとの適応を可能にする。
提案手法は,広く使用されているベンチマークの精度と効率の両面から,最先端の2D/3Dハンドポーズ推定手法より一貫して優れている。
論文 参考訳(メタデータ) (2021-11-11T23:31:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。