論文の概要: Advancing Hate Speech Detection with Transformers: Insights from the MetaHate
- arxiv url: http://arxiv.org/abs/2508.04913v1
- Date: Wed, 06 Aug 2025 22:36:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.657407
- Title: Advancing Hate Speech Detection with Transformers: Insights from the MetaHate
- Title(参考訳): 変圧器によるヘイト音声検出の高度化:メタヘイトからの考察
- Authors: Santosh Chapagain, Shah Muhammad Hamdi, Soukaina Filali Boubrahimi,
- Abstract要約: Twitter、Facebook、Instagram、Redditなどのソーシャルメディアプラットフォームはヘイトスピーチの場となっている。
バニラリカレントニューラルネットワーク(RNN)、長期短期記憶(LSTM)、畳み込みニューラルネットワーク(CNN)といったディープラーニングアプローチは良い結果を得たが、長期的な依存関係や非効率的な並列化といった問題によって制限されることが多い。
本稿では,MetaHateデータセットを用いたヘイトスピーチ検出のためのトランスフォーマーベースモデルの包括的探索について述べる。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hate speech is a widespread and harmful form of online discourse, encompassing slurs and defamatory posts that can have serious social, psychological, and sometimes physical impacts on targeted individuals and communities. As social media platforms such as X (formerly Twitter), Facebook, Instagram, Reddit, and others continue to facilitate widespread communication, they also become breeding grounds for hate speech, which has increasingly been linked to real-world hate crimes. Addressing this issue requires the development of robust automated methods to detect hate speech in diverse social media environments. Deep learning approaches, such as vanilla recurrent neural networks (RNNs), long short-term memory (LSTM), and convolutional neural networks (CNNs), have achieved good results, but are often limited by issues such as long-term dependencies and inefficient parallelization. This study represents the comprehensive exploration of transformer-based models for hate speech detection using the MetaHate dataset--a meta-collection of 36 datasets with 1.2 million social media samples. We evaluate multiple state-of-the-art transformer models, including BERT, RoBERTa, GPT-2, and ELECTRA, with fine-tuned ELECTRA achieving the highest performance (F1 score: 0.8980). We also analyze classification errors, revealing challenges with sarcasm, coded language, and label noise.
- Abstract(参考訳): ヘイトスピーチ(Hate speech)は、広くて有害なオンライン談話であり、標的となる個人やコミュニティに深刻な社会的、心理的、時には身体的影響を及ぼすような、汚職や名誉なポストを包含している。
X(元Twitter)、Facebook、Instagram、Redditなどのソーシャルメディアプラットフォームが広範にわたるコミュニケーションを促進し続けている中、ヘイトスピーチの発端ともなり、現実のヘイト犯罪と結びついている。
この問題に対処するには、多様なソーシャルメディア環境でヘイトスピーチを検出する堅牢な自動化手法の開発が必要である。
バニラリカレントニューラルネットワーク(RNN)、長期短期記憶(LSTM)、畳み込みニューラルネットワーク(CNN)といったディープラーニングアプローチは良い結果を得たが、長期的な依存関係や非効率的な並列化といった問題によって制限されることが多い。
この研究は、MetaHateデータセットを用いたヘイトスピーチ検出のためのトランスフォーマーベースモデルの包括的探索である。
我々は,BERT,RoBERTa,GPT-2,ELECTRAを含む複数の最先端トランスモデルを評価し,細調整ELECTRAが最高性能を達成する(F1スコア:0.8980)。
また、分類誤りを分析し、皮肉、符号化言語、ラベルノイズによる課題を明らかにする。
関連論文リスト
- Hierarchical Sentiment Analysis Framework for Hate Speech Detection: Implementing Binary and Multiclass Classification Strategy [0.0]
本稿では,英語におけるヘイトスピーチを検出するために,共有感情表現と統合された新しいマルチタスクモデルを提案する。
我々は、感情分析とトランスフォーマーに基づく訓練モデルを利用することで、複数のデータセット間でのヘイトスピーチの検出を大幅に改善できると結論付けた。
論文 参考訳(メタデータ) (2024-11-03T04:11:33Z) - A Target-Aware Analysis of Data Augmentation for Hate Speech Detection [3.858155067958448]
ヘイトスピーチは、ソーシャルネットワークの普及によって引き起こされる主要な脅威の1つだ。
本稿では,既存のデータを生成言語モデルで拡張し,ターゲットの不均衡を低減する可能性を検討する。
起源、宗教、障害などのヘイトカテゴリーでは、トレーニングのための強化データを用いたヘイトスピーチ分類は、拡張ベースラインが存在しない場合、10%以上のF1が向上する。
論文 参考訳(メタデータ) (2024-10-10T15:46:27Z) - Recent Advances in Speech Language Models: A Survey [45.968078636811356]
音声言語モデル(SpeechLMs)は、テキストから変換することなく音声を生成するエンドツーエンドモデルである。
本稿では,近年のSpeechLM構築手法について概観する。
論文 参考訳(メタデータ) (2024-10-01T21:48:12Z) - Silent Signals, Loud Impact: LLMs for Word-Sense Disambiguation of Coded Dog Whistles [47.61526125774749]
犬の笛は、特定の聴衆に二次的な意味を持ち、しばしば人種的・社会経済的差別のために武器化された符号化通信の一種である。
本稿では,Large Language Models (LLMs) を用いた標準音声からの犬笛の単語センスの曖昧化手法を提案する。
我々はこの手法を利用して、フォーマルで非公式なコミュニケーションに使用される犬の口笛の16,550個の高信頼符号化されたサンプルのデータセットを作成する。
論文 参考訳(メタデータ) (2024-06-10T23:09:19Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Improved two-stage hate speech classification for twitter based on Deep
Neural Networks [0.0]
ヘイトスピーチ(Hate speech)は、虐待的な言葉の使用を含む、オンラインハラスメントの一種である。
この研究で提案するモデルは、LSTMニューラルネットワークアーキテクチャに基づく既存のアプローチの拡張である。
本研究は,16kツイートの公開コーパスで評価された2段階目の提案手法の性能比較を含む。
論文 参考訳(メタデータ) (2022-06-08T20:57:41Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - Detection of Hate Speech using BERT and Hate Speech Word Embedding with
Deep Model [0.5801044612920815]
本稿では,双方向LSTMに基づくディープモデルにドメイン固有の単語を埋め込み,ヘイトスピーチを自動的に検出・分類する可能性について検討する。
実験の結果、Bidirectional LSTMベースのディープモデルによるドメイン固有単語の埋め込みは93%のf1スコアを獲得し、BERTは96%のf1スコアを達成した。
論文 参考訳(メタデータ) (2021-11-02T11:42:54Z) - Towards Hate Speech Detection at Large via Deep Generative Modeling [4.080068044420974]
ヘイトスピーチ検出はソーシャルメディアプラットフォームにおいて重要な問題である。
生成言語モデルにより生成された100万件の現実的憎悪と非憎悪のシーケンスのデータセットを提示する。
5つの公開ヘイトスピーチデータセットで一貫した、重要なパフォーマンス改善を実証する。
論文 参考訳(メタデータ) (2020-05-13T15:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。