論文の概要: Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning
- arxiv url: http://arxiv.org/abs/2508.05078v1
- Date: Thu, 07 Aug 2025 07:02:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.7345
- Title: Align, Don't Divide: Revisiting the LoRA Architecture in Multi-Task Learning
- Title(参考訳): Align, Don't Divide: マルチタスク学習におけるLoRAアーキテクチャの再検討
- Authors: Jinda Liu, Bo Cheng, Yi Chang, Yuan Wu,
- Abstract要約: 頭間類似度の高い単純化されたマルチヘッドアーキテクチャは、複雑なマルチアダプタおよびマルチヘッドシステムより優れていることを示す。
本稿では,共有アダプタ空間内でのタスク表現の整合性を明示的に損なうAlign-LoRAを提案する。
- 参考スコア(独自算出の注目度): 20.31474646915225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameter-Efficient Fine-Tuning (PEFT) is essential for adapting Large Language Models (LLMs). In practice, LLMs are often required to handle a diverse set of tasks from multiple domains, a scenario naturally addressed by multi-task learning (MTL). Within this MTL context, a prevailing trend involves LoRA variants with multiple adapters or heads, which advocate for structural diversity to capture task-specific knowledge. Our findings present a direct challenge to this paradigm. We first show that a simplified multi-head architecture with high inter-head similarity substantially outperforms complex multi-adapter and multi-head systems. This leads us to question the multi-component paradigm itself, and we further demonstrate that a standard single-adapter LoRA, with a sufficiently increased rank, also achieves highly competitive performance. These results lead us to a new hypothesis: effective MTL generalization hinges on learning robust shared representations, not isolating task-specific features. To validate this, we propose Align-LoRA, which incorporates an explicit loss to align task representations within the shared adapter space. Experiments confirm that Align-LoRA significantly surpasses all baselines, establishing a simpler yet more effective paradigm for adapting LLMs to multiple tasks. The code is available at https://github.com/jinda-liu/Align-LoRA.
- Abstract(参考訳): パラメータ効率の良いファインチューニング(PEFT)は、LLM(Large Language Models)の適応に不可欠である。
実際には、LLMは、マルチタスク学習(MTL)によって自然に対処されるシナリオである、複数のドメインからの多様なタスクの集合を扱うために要求されることが多い。
このMTLコンテキスト内では、複数のアダプタやヘッドを持つLoRA変種が主流であり、タスク固有の知識を捉えるための構造的多様性を提唱している。
我々の発見は、このパラダイムに対する直接的な挑戦である。
まず,頭部間類似度の高い単純化されたマルチヘッドアーキテクチャが,複雑なマルチアダプタとマルチヘッドシステムを大幅に上回っていることを示す。
これにより、マルチコンポーネントパラダイム自体に疑問を呈し、標準の単一アダプタであるLoRAが十分に高いランクを持ち、高い競争性能を達成できることを示す。
これらの結果は、タスク固有の特徴を分離するのではなく、ロバストな共有表現の学習に有効なMTL一般化という新たな仮説をもたらす。
これを検証するために、共有アダプタ空間内でタスク表現を整列させる明示的な損失を含むAlign-LoRAを提案する。
実験により、Align-LoRAは全てのベースラインをはるかに超えることが確認され、複数のタスクにLLMを適用するためのよりシンプルで効果的なパラダイムが確立された。
コードはhttps://github.com/jinda-liu/Align-LoRAで公開されている。
関連論文リスト
- MoRE: A Mixture of Low-Rank Experts for Adaptive Multi-Task Learning [18.0412262027514]
マルチタスクのためのMixture of Low-Rank Experts (MoRE)を提案する。
各タスクに個別のLoRAを使う代わりに、異なるタスクでLoRAモジュールの異なるランクを調整します。
また、タスクごとに適切な専門家を選択するために、新しい適応的なランクセレクタを設計する。
論文 参考訳(メタデータ) (2025-05-28T12:32:09Z) - ThanoRA: Task Heterogeneity-Aware Multi-Task Low-Rank Adaptation [73.18867725540865]
Low-Rank Adaptation (LoRA) は、基礎モデルの下流の微調整に広く採用されている。
タスク不均一性を考慮したマルチタスク低ランク適応フレームワークであるTanoRAを提案する。
論文 参考訳(メタデータ) (2025-05-24T11:01:45Z) - Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning [53.053604713064544]
Low-Rank Adaptation (LoRA)は、その効率性とモジュール性から、大きな言語モデル(LLM)を特定のドメインに適用するために広く使われている。
最近の研究は、各LoRAモジュールを専門家として扱い、複数の特殊なLoRAモジュールによるタスク干渉を軽減することで、Mixture of Experts (MoE)を採用している。
効果はあるものの、これらの手法は個々のタスク内の知識を分離することが多く、関連するタスク間で共有された知識を完全に活用することができない。
各ランクをテキスト処理することでMoEをLoRAに埋め込むシングルランク専門家LoRA(textbfSMoRA)を提案する。
論文 参考訳(メタデータ) (2025-01-25T06:56:39Z) - From Holistic to Localized: Local Enhanced Adapters for Efficient Visual Instruction Fine-Tuning [102.18178065928426]
効率的なビジュアルインストラクションファインタニング(EVIT)は、最小の計算オーバーヘッドで下流タスクにマルチモーダル大言語モデル(MLLM)を適用することを目指している。
本稿では,Dual Low-Rank Adaptation (Dual-LoRA)を提案する。
論文 参考訳(メタデータ) (2024-11-19T11:03:09Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
MTL能力を大幅に向上させながら、低ランク適応の利点を保ちつつ、MTL-LoRAを提案する。
MTL-LoRAは、タスク固有の情報を識別し、共有知識をキャプチャするタスク適応パラメータを追加することで、LoRAを強化する。
このアプローチにより、事前訓練されたモデルは、限られた数のトレーニング可能なパラメータで、異なるターゲットドメインに共同で適応することができる。
論文 参考訳(メタデータ) (2024-10-12T08:32:26Z) - Mixture-of-LoRAs: An Efficient Multitask Tuning for Large Language
Models [7.966452497550907]
大規模言語モデル(LLM)を用いたマルチタスク学習のためのMixture-of-LoRA(MoA)アーキテクチャを提案する。
複数のドメイン固有のLoRAモジュールは、Mixture-of-Experts(MoE)で観察される専門家設計原則と一致させることができる。
各LoRAモデルは、新しいドメインに反復的に適応することができ、素早くドメイン固有の適応を可能にする。
論文 参考訳(メタデータ) (2024-03-06T03:33:48Z) - Multimodal Instruction Tuning with Conditional Mixture of LoRA [51.58020580970644]
本稿では,Low-Rank Adaption (LoRA) とマルチモーダル命令チューニングを統合した新しい手法を提案する。
各入力インスタンスのユニークな要求に合わせた低ランク適応行列を動的に構築することで、LoRAを革新する。
様々なマルチモーダル評価データセットの実験結果から、MixLoRAは従来のLoRAを同等以上のランクで上回るだけでなく、性能も向上していることが示された。
論文 参考訳(メタデータ) (2024-02-24T20:15:31Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - MultiLoRA: Democratizing LoRA for Better Multi-Task Learning [20.750808913757396]
LoRAは、特定のタスクにLLMを適用する際に、顕著なリソース効率と同等のパフォーマンスを達成する。
LoRAは少数のトップ特異ベクトルに支配され、微調整はより重要でないユニタリ変換の集合に分解される。
我々は,LoRAで観測されるトップ特異ベクトルの優位性を低減し,マルチタスク適応性を向上するMultiLoRAを提案する。
論文 参考訳(メタデータ) (2023-11-20T02:59:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。