Sculpting Margin Penalty: Intra-Task Adapter Merging and Classifier Calibration for Few-Shot Class-Incremental Learning
- URL: http://arxiv.org/abs/2508.05094v1
- Date: Thu, 07 Aug 2025 07:26:24 GMT
- Title: Sculpting Margin Penalty: Intra-Task Adapter Merging and Classifier Calibration for Few-Shot Class-Incremental Learning
- Authors: Liang Bai, Hong Song, Jinfu Li, Yucong Lin, Jingfan Fan, Tianyu Fu, Danni Ai, Deqiang Xiao, Jian Yang,
- Abstract summary: Forward-compatible learning is a promising solution for Few-Shot Class-Incremental Learning (FSCIL)<n>We propose SMP (Sculpting Margin Penalty), a novel FSCIL method that strategically integrates margin penalties at different stages within the parameter-efficient fine-tuning paradigm.<n>We show that SMP achieves state-of-the-art performance in FSCIL while maintaining a better balance between base and new classes.
- Score: 20.574528816984955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world applications often face data privacy constraints and high acquisition costs, making the assumption of sufficient training data in incremental tasks unrealistic and leading to significant performance degradation in class-incremental learning. Forward-compatible learning, which prospectively prepares for future tasks during base task training, has emerged as a promising solution for Few-Shot Class-Incremental Learning (FSCIL). However, existing methods still struggle to balance base-class discriminability and new-class generalization. Moreover, limited access to original data during incremental tasks often results in ambiguous inter-class decision boundaries. To address these challenges, we propose SMP (Sculpting Margin Penalty), a novel FSCIL method that strategically integrates margin penalties at different stages within the parameter-efficient fine-tuning paradigm. Specifically, we introduce the Margin-aware Intra-task Adapter Merging (MIAM) mechanism for base task learning. MIAM trains two sets of low-rank adapters with distinct classification losses: one with a margin penalty to enhance base-class discriminability, and the other without margin constraints to promote generalization to future new classes. These adapters are then adaptively merged to improve forward compatibility. For incremental tasks, we propose a Margin Penalty-based Classifier Calibration (MPCC) strategy to refine decision boundaries by fine-tuning classifiers on all seen classes' embeddings with a margin penalty. Extensive experiments on CIFAR100, ImageNet-R, and CUB200 demonstrate that SMP achieves state-of-the-art performance in FSCIL while maintaining a better balance between base and new classes.
Related papers
- Balancing the Past and Present: A Coordinated Replay Framework for Federated Class-Incremental Learning [16.892037777885218]
We propose a class wise balancing data replay method for Federated Class Incremental Learning (FCIL)<n>FedCBDR has two key components: 1) the global-perspective data replay module reconstructs global representations of prior task in a privacy-preserving manner, which then guides a class-aware and importance-sensitive sampling strategy to achieve balanced replay; 2) Subsequently, to handle class imbalance across tasks, the task aware temperature scaling module adaptively adjusts the temperature of logits at both class and instance levels based on task dynamics, which reduces the model's overconfidence in majority classes while enhancing its sensitivity to minority classes.
arXiv Detail & Related papers (2025-07-10T12:46:31Z) - Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need [83.10178754323955]
Few-shot learning enables models to generalize from only a few labeled examples.<n>We propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning.<n>Our method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in annotatedL.
arXiv Detail & Related papers (2025-03-28T07:23:07Z) - SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
We present an in-depth analysis of the progressive overfitting problem from the lens of Seq FT.
Considering that the overly fast representation learning and the biased classification layer constitute this particular problem, we introduce the advanced Slow Learner with Alignment (S++) framework.
Our approach involves a Slow Learner to selectively reduce the learning rate of backbone parameters, and a Alignment to align the disjoint classification layers in a post-hoc fashion.
arXiv Detail & Related papers (2024-08-15T17:50:07Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Generalized Inter-class Loss for Gait Recognition [11.15855312510806]
Gait recognition is a unique biometric technique that can be performed at a long distance non-cooperatively.
Previous gait works focus more on minimizing the intra-class variance while ignoring the significance in constraining inter-class variance.
We propose a generalized inter-class loss which resolves the inter-class variance from both sample-level feature distribution and class-level feature distribution.
arXiv Detail & Related papers (2022-10-13T06:44:53Z) - Margin-Based Few-Shot Class-Incremental Learning with Class-Level
Overfitting Mitigation [19.975435754433754]
Few-shot class-incremental learning (FSCIL) is designed to incrementally recognize novel classes with only few training samples.
A well known modification to the base-class training is to apply a margin to the base-class classification.
We propose a novel margin-based FSCIL method to mitigate the CO problem by providing the pattern learning process with extra constraint from the margin-based patterns themselves.
arXiv Detail & Related papers (2022-10-10T09:45:53Z) - Contextual Squeeze-and-Excitation for Efficient Few-Shot Image
Classification [57.36281142038042]
We present a new adaptive block called Contextual Squeeze-and-Excitation (CaSE) that adjusts a pretrained neural network on a new task to significantly improve performance.
We also present a new training protocol based on Coordinate-Descent called UpperCaSE that exploits meta-trained CaSE blocks and fine-tuning routines for efficient adaptation.
arXiv Detail & Related papers (2022-06-20T15:25:08Z) - Learning Imbalanced Datasets with Maximum Margin Loss [21.305656747991026]
A learning algorithm referred to as Maximum Margin (MM) is proposed for considering the class-imbalance data learning issue.
We design a new Maximum Margin (MM) loss function, motivated by minimizing a margin-based generalization bound through the shifting decision bound.
arXiv Detail & Related papers (2022-06-11T00:21:41Z) - Boosting Discriminative Visual Representation Learning with
Scenario-Agnostic Mixup [54.09898347820941]
We propose textbfScenario-textbfAgnostic textbfMixup (SAMix) for both Self-supervised Learning (SSL) and supervised learning (SL) scenarios.
Specifically, we hypothesize and verify the objective function of mixup generation as optimizing local smoothness between two mixed classes.
A label-free generation sub-network is designed, which effectively provides non-trivial mixup samples and improves transferable abilities.
arXiv Detail & Related papers (2021-11-30T14:49:59Z) - Boosting Few-Shot Learning With Adaptive Margin Loss [109.03665126222619]
This paper proposes an adaptive margin principle to improve the generalization ability of metric-based meta-learning approaches for few-shot learning problems.
Extensive experiments demonstrate that the proposed method can boost the performance of current metric-based meta-learning approaches.
arXiv Detail & Related papers (2020-05-28T07:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.