pFedDSH: Enabling Knowledge Transfer in Personalized Federated Learning through Data-free Sub-Hypernetwork
- URL: http://arxiv.org/abs/2508.05157v1
- Date: Thu, 07 Aug 2025 08:43:02 GMT
- Title: pFedDSH: Enabling Knowledge Transfer in Personalized Federated Learning through Data-free Sub-Hypernetwork
- Authors: Thinh Nguyen, Le Huy Khiem, Van-Tuan Tran, Khoa D Doan, Nitesh V Chawla, Kok-Seng Wong,
- Abstract summary: Federated Learning (FL) enables collaborative model training across distributed clients without sharing raw data.<n>Most existing Personalized Federated Learning (pFL) methods assume a static client participation.<n>We propose a novel framework based on a central hypernetwork that generates personalized models for each client via embedding vectors.
- Score: 25.473179274411514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) enables collaborative model training across distributed clients without sharing raw data, offering a significant privacy benefit. However, most existing Personalized Federated Learning (pFL) methods assume a static client participation, which does not reflect real-world scenarios where new clients may continuously join the federated system (i.e., dynamic client onboarding). In this paper, we explore a practical scenario in which a new batch of clients is introduced incrementally while the learning task remains unchanged. This dynamic environment poses various challenges, including preserving performance for existing clients without retraining and enabling efficient knowledge transfer between client batches. To address these issues, we propose Personalized Federated Data-Free Sub-Hypernetwork (pFedDSH), a novel framework based on a central hypernetwork that generates personalized models for each client via embedding vectors. To maintain knowledge stability for existing clients, pFedDSH incorporates batch-specific masks, which activate subsets of neurons to preserve knowledge. Furthermore, we introduce a data-free replay strategy motivated by DeepInversion to facilitate backward transfer, enhancing existing clients' performance without compromising privacy. Extensive experiments conducted on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that pFedDSH outperforms the state-of-the-art pFL and Federated Continual Learning baselines in our investigation scenario. Our approach achieves robust performance stability for existing clients, as well as adaptation for new clients and efficient utilization of neural resources.
Related papers
- Optimal Strategies for Federated Learning Maintaining Client Privacy [8.518748080337838]
This paper studies the tradeoff between model performance and communication of the Federated Learning system.<n>We show that training for one local epoch per global round of training gives optimal performance while preserving the same privacy budget.
arXiv Detail & Related papers (2025-01-24T12:34:38Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.<n>We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - PeFLL: Personalized Federated Learning by Learning to Learn [16.161876130822396]
We present PeFLL, a new personalized federated learning algorithm that improves over the state-of-the-art in three aspects.<n>At the core of PeFLL lies a learning-to-learn approach that jointly trains an embedding network and a hypernetwork.
arXiv Detail & Related papers (2023-06-08T19:12:42Z) - Personalized Privacy-Preserving Framework for Cross-Silo Federated
Learning [0.0]
Federated learning (FL) is a promising decentralized deep learning (DL) framework that enables DL-based approaches trained collaboratively across clients without sharing private data.
In this paper, we propose a novel framework, namely Personalized Privacy-Preserving Federated Learning (PPPFL)
Our proposed framework outperforms multiple FL baselines on different datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100.
arXiv Detail & Related papers (2023-02-22T07:24:08Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM [62.62684911017472]
Federated learning (FL) enables devices to jointly train shared models while keeping the training data local for privacy purposes.
We introduce a VFL framework with multiple heads (VIM), which takes the separate contribution of each client into account.
VIM achieves significantly higher performance and faster convergence compared with the state-of-the-art.
arXiv Detail & Related papers (2022-07-20T23:14:33Z) - FRAug: Tackling Federated Learning with Non-IID Features via
Representation Augmentation [31.12851987342467]
Federated Learning (FL) is a decentralized learning paradigm in which multiple clients collaboratively train deep learning models.
We propose Federated Representation Augmentation (FRAug) to tackle this practical and challenging problem.
Our approach generates synthetic client-specific samples in the embedding space to augment the usually small client datasets.
arXiv Detail & Related papers (2022-05-30T07:43:42Z) - Addressing Client Drift in Federated Continual Learning with Adaptive
Optimization [10.303676184878896]
We outline a framework for performing Federated Continual Learning (FCL) by using NetTailor as a candidate continual learning approach.
We show that adaptive federated optimization can reduce the adverse impact of client drift and showcase its effectiveness on CIFAR100, MiniImagenet, and Decathlon benchmarks.
arXiv Detail & Related papers (2022-03-24T20:00:03Z) - Tackling Dynamics in Federated Incremental Learning with Variational
Embedding Rehearsal [27.64806509651952]
We propose a novel algorithm to address the incremental learning process in an FL scenario.
We first propose using deep Variational Embeddings that secure the privacy of the client data.
Second, we propose a server-side training method that enables a model to rehearse the previously learnt knowledge.
arXiv Detail & Related papers (2021-10-19T02:26:35Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Federated Continual Learning with Weighted Inter-client Transfer [79.93004004545736]
We propose a novel federated continual learning framework, Federated Weighted Inter-client Transfer (FedWeIT)
FedWeIT decomposes the network weights into global federated parameters and sparse task-specific parameters, and each client receives selective knowledge from other clients.
We validate our FedWeIT against existing federated learning and continual learning methods, and our model significantly outperforms them with a large reduction in the communication cost.
arXiv Detail & Related papers (2020-03-06T13:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.