Balancing Accuracy and Novelty with Sub-Item Popularity
- URL: http://arxiv.org/abs/2508.05198v1
- Date: Thu, 07 Aug 2025 09:33:32 GMT
- Title: Balancing Accuracy and Novelty with Sub-Item Popularity
- Authors: Chiara Mallamaci, Aleksandr Vladimirovich Petrov, Alberto Carlo Maria Mancino, Vito Walter Anelli, Tommaso Di Noia, Craig Macdonald,
- Abstract summary: We propose a novel integration of sub-ID-level personalised popularity within the RecJPQ framework.<n>Our method consistently outperforms item-level PPS by achieving significantly higher personalised novelty without compromising recommendation accuracy.
- Score: 54.56622169534604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of music recommendation, sequential recommenders have shown promise in capturing the dynamic nature of music consumption. A key characteristic of this domain is repetitive listening, where users frequently replay familiar tracks. To capture these repetition patterns, recent research has introduced Personalised Popularity Scores (PPS), which quantify user-specific preferences based on historical frequency. While PPS enhances relevance in recommendation, it often reinforces already-known content, limiting the system's ability to surface novel or serendipitous items - key elements for fostering long-term user engagement and satisfaction. To address this limitation, we build upon RecJPQ, a Transformer-based framework initially developed to improve scalability in large-item catalogues through sub-item decomposition. We repurpose RecJPQ's sub-item architecture to model personalised popularity at a finer granularity. This allows us to capture shared repetition patterns across sub-embeddings - latent structures not accessible through item-level popularity alone. We propose a novel integration of sub-ID-level personalised popularity within the RecJPQ framework, enabling explicit control over the trade-off between accuracy and personalised novelty. Our sub-ID-level PPS method (sPPS) consistently outperforms item-level PPS by achieving significantly higher personalised novelty without compromising recommendation accuracy. Code and experiments are publicly available at https://github.com/sisinflab/Sub-id-Popularity.
Related papers
- A Framework for Elastic Adaptation of User Multiple Intents in Sequential Recommendation [21.3922837727912]
We propose an effective Incremental learning framework for user Multi-intent Adaptation in sequential recommendation called IMA.<n>We upgrade the IMA into an Elastic Multi-intent Adaptation framework which can elastically remove inactive intents and compress user intent vectors under memory space limit.
arXiv Detail & Related papers (2025-04-30T02:55:30Z) - Towards Popularity-Aware Recommendation: A Multi-Behavior Enhanced Framework with Orthogonality Constraint [4.137753517504481]
Top-$K$ recommendation involves inferring latent user preferences and generating personalized recommendations.<n>We present a textbfPopularity-aware top-$K$ recommendation algorithm integrating multi-behavior textbfSide textbfInformation.
arXiv Detail & Related papers (2024-12-26T11:06:49Z) - Multi-granularity Interest Retrieval and Refinement Network for Long-Term User Behavior Modeling in CTR Prediction [68.90783662117936]
Click-through Rate (CTR) prediction is crucial for online personalization platforms.<n>Recent advancements have shown that modeling rich user behaviors can significantly improve the performance of CTR prediction.<n>We propose Multi-granularity Interest Retrieval and Refinement Network (MIRRN)
arXiv Detail & Related papers (2024-11-22T15:29:05Z) - Enhancing Sequential Music Recommendation with Personalized Popularity Awareness [56.972624411205224]
This paper introduces a novel approach that incorporates personalized popularity information into sequential recommendation.
Experimental results demonstrate that a Personalized Most Popular recommender outperforms existing state-of-the-art models.
arXiv Detail & Related papers (2024-09-06T15:05:12Z) - Disentangling Length from Quality in Direct Preference Optimization [93.74831404396174]
Reinforcement Learning from Human Feedback (RLHF) has been a crucial component in the recent success of Large Language Models.
RLHF is know to exploit biases in human preferences, such as verbosity.
We develop a principled but simple regularization strategy that prevents length exploitation, while still maintaining improvements in model quality.
arXiv Detail & Related papers (2024-03-28T06:03:47Z) - Capturing Popularity Trends: A Simplistic Non-Personalized Approach for
Enhanced Item Recommendation [10.606845291519932]
Popularity-Aware Recommender (PARE) makes non-personalized recommendations by predicting the items that will attain the highest popularity.
To our knowledge, this is the first work to explicitly model item popularity in recommendation systems.
arXiv Detail & Related papers (2023-08-17T06:20:03Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
We propose a Diverse Preference Augmentation framework with multiple source domains based on meta-learning.
We generate diverse ratings in a new domain of interest to handle overfitting on the case of sparse interactions.
These ratings are introduced into the meta-training procedure to learn a preference meta-learner, which produces good generalization ability.
arXiv Detail & Related papers (2022-04-01T10:10:50Z) - Denoising User-aware Memory Network for Recommendation [11.145186013006375]
We propose a novel CTR model named denoising user-aware memory network (DUMN)
DUMN uses the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback.
Experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2021-07-12T14:39:36Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.