論文の概要: Salt-Rock Creep Deformation Forecasting Using Deep Neural Networks and Analytical Models for Subsurface Energy Storage Applications
- arxiv url: http://arxiv.org/abs/2508.05248v1
- Date: Thu, 07 Aug 2025 10:37:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.821186
- Title: Salt-Rock Creep Deformation Forecasting Using Deep Neural Networks and Analytical Models for Subsurface Energy Storage Applications
- Title(参考訳): 深部ニューラルネットワークと解析モデルを用いた地下エネルギー貯蔵用塩-岩石クリープ変形予測
- Authors: Pradeep Kumar Shukla, Tanujit Chakraborty, Mustafa Sari, Joel Sarout, Partha Pratim Mandal,
- Abstract要約: クリープ変形評価は、核廃棄物、水素エネルギー、放射性物質の地下貯蔵施設の設計と運用に不可欠である。
本研究は, 塩岩の時間依存性変形傾向(クリープ)を予測するための時系列予測法について, 種々の凝縮圧力条件下での詳細な解析を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study provides an in-depth analysis of time series forecasting methods to predict the time-dependent deformation trend (also known as creep) of salt rock under varying confining pressure conditions. Creep deformation assessment is essential for designing and operating underground storage facilities for nuclear waste, hydrogen energy, or radioactive materials. Salt rocks, known for their mechanical properties like low porosity, low permeability, high ductility, and exceptional creep and self-healing capacities, were examined using multi-stage triaxial (MSTL) creep data. After resampling, axial strain datasets were recorded at 5--10 second intervals under confining pressure levels ranging from 5 to 35 MPa over 5.8--21 days. Initial analyses, including Seasonal-Trend Decomposition (STL) and Granger causality tests, revealed minimal seasonality and causality between axial strain and temperature data. Further statistical tests, such as the Augmented Dickey-Fuller (ADF) test, confirmed the stationarity of the data with p-values less than 0.05, and wavelet coherence plot (WCP) analysis indicated repeating trends. A suite of deep neural network (DNN) models (Neural Basis Expansion Analysis for Time Series (N-BEATS), Temporal Convolutional Networks (TCN), Recurrent Neural Networks (RNN), and Transformers (TF)) was utilized and compared against statistical baseline models. Predictive performance was evaluated using Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Symmetric Mean Absolute Percentage Error (SMAPE). Results demonstrated that N-BEATS and TCN models outperformed others across various stress levels, respectively. DNN models, particularly N-BEATS and TCN, showed a 15--20\% improvement in accuracy over traditional analytical models, effectively capturing complex temporal dependencies and patterns.
- Abstract(参考訳): 本研究は, 塩岩の時間依存性変形傾向(クリープ)を予測するための時系列予測法について, 種々の凝縮圧力条件下での詳細な解析を行った。
クリープ変形評価は、核廃棄物、水素エネルギー、放射性物質の地下貯蔵施設の設計および運用に不可欠である。
低ポーシティ, 低透過性, 高延性, 異常クリープ, 自己修復能力などの機械的特性で知られている塩岩について, マルチステージ3軸クリープデータを用いて検討した。
再サンプリング後, 5~35MPaから5.8~21日で, 5~10秒間隔で軸ひずみデータセットが記録された。
季節傾向分解 (STL) とグランガー因果性試験 (Granger causality test) を含む初期分析の結果, 軸方向ひずみと温度データとの季節性および因果性は最小であった。
ADF(Augmented Dickey-Fuller)テストのようなさらなる統計テストでは、p値0.05未満でデータの定常性を確認し、ウェーブレットコヒーレンスプロット(WCP)分析では繰り返し傾向を示した。
深層ニューラルネットワーク(DNN)モデル群(N-BEATS,TCN,RNN,Transformer)を用いて,統計ベースラインモデルと比較した。
予測性能は,Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage Error (SMAPE)を用いて評価した。
実験の結果, N-BEATSモデルとTCNモデルは, 各種応力レベルにおいてそれぞれ優れていた。
DNNモデル、特にN-BEATSとTCNは、従来の分析モデルよりも15-20-%の精度向上を示し、複雑な時間的依存関係とパターンを効果的にキャプチャした。
関連論文リスト
- NeuralSurv: Deep Survival Analysis with Bayesian Uncertainty Quantification [45.560812800359685]
我々はベイズの不確実性定量化を取り入れた最初のディープサバイバルモデルであるNeuralSurvを紹介する。
モデルサイズを線形にスケールする座標アセット更新を用いた平均場変分アルゴリズムを導入する。
実験では、NeuralSurvは最先端のディープサバイバルモデルよりも優れたキャリブレーションを提供する。
論文 参考訳(メタデータ) (2025-05-16T09:53:21Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Developing an Optimal Model for Predicting the Severity of Wheat Stem
Rust (Case study of Arsi and Bale Zone) [0.0]
平均気温、平均最低気温、平均降雨量、平均気温、異なる小麦品種などのパラメータを検討した。
その結果,全季節降雨がコムギ茎さびの発生に有意な影響を及ぼした。
論文 参考訳(メタデータ) (2024-02-16T07:48:59Z) - Graph Neural Networks for Pressure Estimation in Water Distribution
Systems [44.99833362998488]
水分配ネットワーク(WDN)における圧力と流量の推定により、水管理会社は制御操作を最適化できる。
物理に基づくモデリングとデータ駆動型アプローチであるグラフニューラルネットワーク(GNN)を組み合わせて,圧力推定問題に対処する。
我々のGNNモデルでは、オランダの大規模WDNの圧力は1.94mH$O、MAPEは7%と見積もられている。
論文 参考訳(メタデータ) (2023-11-17T15:30:12Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - A comparative assessment of deep learning models for day-ahead load
forecasting: Investigating key accuracy drivers [2.572906392867547]
短期負荷予測(STLF)は電力グリッドとエネルギー市場の効果的かつ経済的な運用に不可欠である。
STLFの文献ではいくつかのディープラーニングモデルが提案されており、有望な結果を報告している。
論文 参考訳(メタデータ) (2023-02-23T17:11:04Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
最近の機械学習(ML)モデルでは、高解像度信号において重要なダイナミクスを捉えることが約束されている。
この研究は、低解像度のダウンサンプリング機能で重要な情報が失われることがしばしばあることを示している。
本稿では,高度な時系列シーケンスモデリングと最先端のニューラルPDEソルバの強みを組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-02-16T06:13:01Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
その結果,DP-SGD(差分偏差勾配勾配勾配勾配勾配)は,低校正・過信深層学習モデルが得られることがわかった。
これは、医療診断など、安全クリティカルな応用にとって深刻な問題である。
論文 参考訳(メタデータ) (2021-07-09T08:14:45Z) - Dynamical prediction of two meteorological factors using the deep neural
network and the long short term memory $(1)$ [0.0]
本研究では,既存のニューラルネットワーク法を用いて予測精度を向上させる。
シミュレーション研究は、人工ニューラルネットワーク(ANN)、ディープニューラルネットワーク(DNN)、エクストリームラーニングマシン(ELM)、ロング短期メモリ(LSTM)を適用することによって行われます。
2014年3月から2020年2月までの韓国10都市の低周波時系列からデータを抽出する。
論文 参考訳(メタデータ) (2021-01-16T16:24:24Z) - Statistical Downscaling of Temperature Distributions from the Synoptic
Scale to the Mesoscale Using Deep Convolutional Neural Networks [0.0]
有望な応用の1つは、低分解能ダイナミックモデルの出力画像を高分解能画像に変換する統計的代理モデルを開発することである。
本研究では,6時間毎に合成温度場をメソスケール温度場にダウンスケールする代理モデルについて検討した。
代理モデルが短時間で実施されれば、高解像度の天気予報ガイダンスや環境緊急警報を低コストで提供する。
論文 参考訳(メタデータ) (2020-07-20T06:24:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。