論文の概要: An Explainable Natural Language Framework for Identifying and Notifying Target Audiences In Enterprise Communication
- arxiv url: http://arxiv.org/abs/2508.05267v1
- Date: Thu, 07 Aug 2025 11:02:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.830192
- Title: An Explainable Natural Language Framework for Identifying and Notifying Target Audiences In Enterprise Communication
- Title(参考訳): 企業コミュニケーションにおけるターゲットオーディエンスを特定して通知するための説明可能な自然言語フレームワーク
- Authors: Vítor N. Lourenço, Mohnish Dubey, Yunfei Bai, Audrey Depeige, Vivek Jain,
- Abstract要約: 本稿では,RDFグラフデータベースとLLMを組み合わせて自然言語クエリを処理する新しいフレームワークを提案する。
当社のソリューションは,機器,製造業者,保守技術者,設備といった概念を組み込んだ直感的なクエリの定式化を可能にする。
- 参考スコア(独自算出の注目度): 2.8148310015015383
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In large-scale maintenance organizations, identifying subject matter experts and managing communications across complex entities relationships poses significant challenges -- including information overload and longer response times -- that traditional communication approaches fail to address effectively. We propose a novel framework that combines RDF graph databases with LLMs to process natural language queries for precise audience targeting, while providing transparent reasoning through a planning-orchestration architecture. Our solution enables communication owners to formulate intuitive queries combining concepts such as equipment, manufacturers, maintenance engineers, and facilities, delivering explainable results that maintain trust in the system while improving communication efficiency across the organization.
- Abstract(参考訳): 大規模保守組織では、課題の専門家を特定し、複雑なエンティティ間のコミュニケーションを管理することは、従来のコミュニケーションアプローチが効果的に対処できない、情報過負荷や応答時間の延長など、重大な課題を引き起こす。
本稿では,RDF グラフデータベースと LLM を組み合わせた新しいフレームワークを提案する。
本ソリューションでは,機器,製造業者,保守技術者,設備といった概念を組み合わせた直感的なクエリを定式化し,組織間のコミュニケーション効率を向上しつつ,システムに対する信頼性を維持するための説明可能な結果を提供する。
関連論文リスト
- Enhancing Large Language Models (LLMs) for Telecommunications using Knowledge Graphs and Retrieval-Augmented Generation [52.8352968531863]
大規模言語モデル(LLM)は、汎用自然言語処理タスクにおいて大きな進歩を遂げている。
本稿では,知識グラフ(KG)と検索拡張生成(RAG)技術を組み合わせた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-31T15:58:08Z) - Beyond Self-Talk: A Communication-Centric Survey of LLM-Based Multi-Agent Systems [23.379992200838053]
大規模言語モデルに基づくマルチエージェントシステムは、複雑で協調的でインテリジェントな問題解決能力の可能性から、最近大きな注目を集めている。
既存の調査は、通常、LLM-MASをアプリケーションドメインやアーキテクチャに従って分類し、エージェントの振る舞いや相互作用を調整する際のコミュニケーションの中心的な役割を見越す。
本レビューは,LLM-MASにおける通信機構の理解を深め,堅牢でスケーラブルでセキュアなマルチエージェントシステムの設計と展開を容易にすることを目的としている。
論文 参考訳(メタデータ) (2025-02-20T07:18:34Z) - Conversation Routines: A Prompt Engineering Framework for Task-Oriented Dialog Systems [0.21756081703275998]
本研究では,Large Language Models (LLMs) を用いたタスク指向対話システムの開発のための,構造化されたプロンプトエンジニアリングフレームワークである Conversation Routines (CR) を紹介する。
提案したCRフレームワークは,自然言語仕様による会話エージェントシステム(CAS)の開発を可能にする。
このフレームワークの有効性を,Train Booking SystemとInteractive Ticket Copilotという2つの概念実証実装を通じて実証する。
論文 参考訳(メタデータ) (2025-01-20T17:19:02Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
本稿では,各エージェントに対して時間的ゲーティング機構を導入し,ある時間に共有情報を受信するかどうかの動的決定を可能にする。
論文 参考訳(メタデータ) (2024-11-01T05:56:51Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
本稿では,大規模言語モデル(LLM)の多段階推論能力向上を目的としたフレームワークであるStructure Guided Promptを紹介する。
実験の結果,このフレームワークはLLMの推論能力を大幅に向上し,より広い範囲の自然言語シナリオを拡張できることがわかった。
論文 参考訳(メタデータ) (2024-02-20T22:56:23Z) - PACE: A Pragmatic Agent for Enhancing Communication Efficiency Using
Large Language Models [29.016842120305892]
本稿では,Large Language Models (LLM) を用いたPACE(Pragmatic Agent for Communication efficiency)に基づく画像実用的コミュニケーションフレームワークを提案する。
PACEは、意味認識、意図分解、意図指向コーディングを順次実行する。
実験的な検証のために,画像の実用的コミュニケーションデータセットとそれに対応する評価基準を構築した。
論文 参考訳(メタデータ) (2024-01-30T06:55:17Z) - Large Language Model Enhanced Multi-Agent Systems for 6G Communications [94.45712802626794]
本稿では,自然言語を用いたコミュニケーション関連タスクを解くための,カスタマイズされたコミュニケーション知識とツールを備えたマルチエージェントシステムを提案する。
セマンティック通信システムの設計により,提案方式の有効性を検証した。
論文 参考訳(メタデータ) (2023-12-13T02:35:57Z) - Exchange-of-Thought: Enhancing Large Language Model Capabilities through
Cross-Model Communication [76.04373033082948]
大規模言語モデル(LLM)は、最近、Chain-of-Thoughtテクニックによる複雑な推論タスクにおいて大きな進歩を遂げました。
本稿では,問題解決時のクロスモデル通信を可能にする新しいフレームワークであるExchange-of-Thought (EoT)を提案する。
論文 参考訳(メタデータ) (2023-12-04T11:53:56Z) - Beyond Transmitting Bits: Context, Semantics, and Task-Oriented
Communications [88.68461721069433]
次世代システムは、メッセージセマンティクスを折り畳み、コミュニケーションの目標を設計に組み込むことによって、潜在的に豊かになる。
このチュートリアルは、初期適応、セマンティック・アウェア、タスク指向コミュニケーションから始まり、現在までの取り組みを要約する。
その焦点は、情報理論を利用して基礎を提供するアプローチと、意味論やタスク対応コミュニケーションにおける学習の重要な役割である。
論文 参考訳(メタデータ) (2022-07-19T16:00:57Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
本研究では,マルチエージェント強化学習(MARL)環境下での大規模マルチエージェント通信機構について検討する。
本稿では、より柔軟で効率的な通信トポロジを用いて、LSC(Learning Structured Communication)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-11T07:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。