A Novel Architecture for Symbolic Reasoning with Decision Trees and LLM Agents
- URL: http://arxiv.org/abs/2508.05311v1
- Date: Thu, 07 Aug 2025 12:11:53 GMT
- Title: A Novel Architecture for Symbolic Reasoning with Decision Trees and LLM Agents
- Authors: Andrew Kiruluta,
- Abstract summary: We propose a hybrid architecture that integrates decision tree-based symbolic reasoning with the generative capabilities of large language models.<n>Tree-based modules enable interpretable rule inference and causal logic, while LLM agents handle abductive reasoning, generalization, and interactive planning.<n>System achieves strong performance on reasoning benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a hybrid architecture that integrates decision tree-based symbolic reasoning with the generative capabilities of large language models (LLMs) within a coordinated multi-agent framework. Unlike prior approaches that loosely couple symbolic and neural modules, our design embeds decision trees and random forests as callable oracles within a unified reasoning system. Tree-based modules enable interpretable rule inference and causal logic, while LLM agents handle abductive reasoning, generalization, and interactive planning. A central orchestrator maintains belief state consistency and mediates communication across agents and external tools, enabling reasoning over both structured and unstructured inputs. The system achieves strong performance on reasoning benchmarks. On \textit{ProofWriter}, it improves entailment consistency by +7.2\% through logic-grounded tree validation. On GSM8k, it achieves +5.3\% accuracy gains in multistep mathematical problems via symbolic augmentation. On \textit{ARC}, it boosts abstraction accuracy by +6.0\% through integration of symbolic oracles. Applications in clinical decision support and scientific discovery show how the system encodes domain rules symbolically while leveraging LLMs for contextual inference and hypothesis generation. This architecture offers a robust, interpretable, and extensible solution for general-purpose neuro-symbolic reasoning.
Related papers
- A Comparative Study of Neurosymbolic AI Approaches to Interpretable Logical Reasoning [0.0]
General logical reasoning, defined as the ability to reason deductively on domain-agnostic tasks, continues to be a challenge for large language models (LLMs)<n>There has been a recent surge in interest in neurosymbolic AI, which attempts to incorporate logic into neural networks.<n>We first identify two main neurosymbolic approaches to improving logical reasoning.
arXiv Detail & Related papers (2025-08-05T12:14:32Z) - From Language to Logic: A Bi-Level Framework for Structured Reasoning [6.075080928704587]
Structured reasoning over natural language inputs remains a core challenge in artificial intelligence.<n>We propose a novel framework that maps language to logic through a two-stage process: high-level task abstraction and low-level logic generation.<n>Our approach significantly outperforms existing baselines in accuracy, with accuracy gains reaching as high as 40%.
arXiv Detail & Related papers (2025-07-11T11:24:09Z) - Do LLMs Dream of Discrete Algorithms? [0.7646713951724011]
Large Language Models (LLMs) have rapidly transformed the landscape of artificial intelligence.<n>Their reliance on probabilistic inference limits their effectiveness in domains requiring strict logical reasoning.<n>This paper proposes a neurosymbolic approach that augments LLMs with logic-based reasoning modules.
arXiv Detail & Related papers (2025-06-29T22:03:01Z) - Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
Chain-of-Thought (CoT) prompting has shown promise in enhancing the reasoning capabilities of large language models (LLMs)<n>We propose Reasoning-as-Logic-Units (RaLU), which constructs a more reliable reasoning path by aligning logical units between the generated program and their corresponding NL descriptions.
arXiv Detail & Related papers (2025-02-05T08:23:18Z) - Compositional Generalization Across Distributional Shifts with Sparse Tree Operations [77.5742801509364]
We introduce a unified neurosymbolic architecture called the Differentiable Tree Machine.<n>We significantly increase the model's efficiency through the use of sparse vector representations of symbolic structures.<n>We enable its application beyond the restricted set of tree2tree problems to the more general class of seq2seq problems.
arXiv Detail & Related papers (2024-12-18T17:20:19Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
Large Language Models (LLMs) have revolutionized natural language processing, yet they struggle with inconsistent reasoning.
This research introduces Proof of Thought, a framework that enhances the reliability and transparency of LLM outputs.
Key contributions include a robust type system with sort management for enhanced logical integrity, explicit representation of rules for clear distinction between factual and inferential knowledge.
arXiv Detail & Related papers (2024-09-25T18:35:45Z) - An Encoding of Abstract Dialectical Frameworks into Higher-Order Logic [57.24311218570012]
This approach allows for the computer-assisted analysis of abstract dialectical frameworks.
Exemplary applications include the formal analysis and verification of meta-theoretical properties.
arXiv Detail & Related papers (2023-12-08T09:32:26Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEG is a holistic visual semantic that integrates neural inductive learning and logic reasoning with both rich data and symbolic knowledge.
During fuzzy logic-based continuous relaxation, logical formulae are grounded onto data and neural computational graphs, hence enabling logic-induced network training.
These designs together make LOGICSEG a general and compact neural-logic machine that is readily integrated into existing segmentation models.
arXiv Detail & Related papers (2023-09-24T05:43:19Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
We propose a holistic graph network (HGN) which deals with context at both discourse level and word level, as the basis for logical reasoning.
Specifically, node-level and type-level relations, which can be interpreted as bridges in the reasoning process, are modeled by a hierarchical interaction mechanism.
arXiv Detail & Related papers (2023-06-21T07:34:27Z) - Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent
Semantic Communications [71.63189900803623]
A novel emergent SC system framework is proposed and is composed of a signaling game for emergent language design and a neuro-symbolic (NeSy) artificial intelligence (AI) approach for causal reasoning.
The ESC system is designed to enhance the novel metrics of semantic information, reliability, distortion and similarity.
arXiv Detail & Related papers (2022-10-21T15:33:37Z) - Question Answering over Knowledge Bases by Leveraging Semantic Parsing
and Neuro-Symbolic Reasoning [73.00049753292316]
We propose a semantic parsing and reasoning-based Neuro-Symbolic Question Answering(NSQA) system.
NSQA achieves state-of-the-art performance on QALD-9 and LC-QuAD 1.0.
arXiv Detail & Related papers (2020-12-03T05:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.