Can Language Models Critique Themselves? Investigating Self-Feedback for Retrieval Augmented Generation at BioASQ 2025
- URL: http://arxiv.org/abs/2508.05366v1
- Date: Thu, 07 Aug 2025 13:13:19 GMT
- Title: Can Language Models Critique Themselves? Investigating Self-Feedback for Retrieval Augmented Generation at BioASQ 2025
- Authors: Samy Ateia, Udo Kruschwitz,
- Abstract summary: RAG and 'deep research' systems aim to enable autonomous search processes where Large Language Models (LLMs) iteratively refine outputs.<n>Applying these systems to domain-specific professional search, such as biomedical research, presents challenges.<n>We investigated whether this iterative self-correction improves performance and if reasoning models are more capable of generating useful feedback.
- Score: 1.6819960041696331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agentic Retrieval Augmented Generation (RAG) and 'deep research' systems aim to enable autonomous search processes where Large Language Models (LLMs) iteratively refine outputs. However, applying these systems to domain-specific professional search, such as biomedical research, presents challenges, as automated systems may reduce user involvement and misalign with expert information needs. Professional search tasks often demand high levels of user expertise and transparency. The BioASQ CLEF 2025 challenge, using expert-formulated questions, can serve as a platform to study these issues. We explored the performance of current reasoning and nonreasoning LLMs like Gemini-Flash 2.0, o3-mini, o4-mini and DeepSeek-R1. A key aspect of our methodology was a self-feedback mechanism where LLMs generated, evaluated, and then refined their outputs for query expansion and for multiple answer types (yes/no, factoid, list, ideal). We investigated whether this iterative self-correction improves performance and if reasoning models are more capable of generating useful feedback. Preliminary results indicate varied performance for the self-feedback strategy across models and tasks. This work offers insights into LLM self-correction and informs future work on comparing the effectiveness of LLM-generated feedback with direct human expert input in these search systems.
Related papers
- SEM: Reinforcement Learning for Search-Efficient Large Language Models [26.075903427834838]
Large Language Models (LLMs) have demonstrated their capabilities not only in reasoning but also in invoking external tools.<n>Existing reinforcement learning approaches often lead to redundant search behaviors, resulting in inefficiencies and over-cost.<n>We propose SEM, a novel post-training reinforcement learning framework that explicitly trains LLMs to optimize search usage.
arXiv Detail & Related papers (2025-05-12T09:45:40Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - A Reproducibility and Generalizability Study of Large Language Models for Query Generation [14.172158182496295]
generative AI and large language models (LLMs) promise to revolutionize the systematic literature review process.
This paper presents an extensive study of Boolean query generation using LLMs for systematic reviews.
Our study investigates the replicability and reliability of results achieved using ChatGPT.
We then generalize our results by analyzing and evaluating open-source models.
arXiv Detail & Related papers (2024-11-22T13:15:03Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
Large Language Models (LLMs) have shown great potential in the biomedical domain with the advancement of retrieval-augmented generation (RAG)
Existing retrieval-augmented approaches face challenges in addressing diverse queries and documents, particularly for medical knowledge queries.
We propose Self-Rewarding Tree Search (SeRTS) based on Monte Carlo Tree Search (MCTS) and a self-rewarding paradigm.
arXiv Detail & Related papers (2024-06-17T06:48:31Z) - Human-AI Collaborative Essay Scoring: A Dual-Process Framework with LLMs [13.262711792955377]
This study explores the effectiveness of Large Language Models (LLMs) for automated essay scoring.
We propose an open-source LLM-based AES system, inspired by the dual-process theory.
We find that our system not only automates the grading process but also enhances the performance and efficiency of human graders.
arXiv Detail & Related papers (2024-01-12T07:50:10Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities.
Concerns persist regarding the accuracy and appropriateness of their generated content.
A contemporary methodology, self-correction, has been proposed as a remedy to these issues.
arXiv Detail & Related papers (2023-10-03T04:56:12Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
Large language models (LLMs) have demonstrated remarkable performance across a wide array of NLP tasks.
A promising approach to rectify these flaws is self-correction, where the LLM itself is prompted or guided to fix problems in its own output.
This paper presents a comprehensive review of this emerging class of techniques.
arXiv Detail & Related papers (2023-08-06T18:38:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.