Real-Time Iteration Scheme for Diffusion Policy
- URL: http://arxiv.org/abs/2508.05396v1
- Date: Thu, 07 Aug 2025 13:49:00 GMT
- Title: Real-Time Iteration Scheme for Diffusion Policy
- Authors: Yufei Duan, Hang Yin, Danica Kragic,
- Abstract summary: We introduce a novel approach inspired by the Real-Time Iteration (RTI) Scheme to accelerate inference.<n>We propose a scaling-based method to effectively handle discrete actions, such as grasping, in robotic manipulation.<n>The proposed scheme significantly reduces runtime computational costs without the need for distillation or policy redesign.
- Score: 23.124189676943757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Policies have demonstrated impressive performance in robotic manipulation tasks. However, their long inference time, resulting from an extensive iterative denoising process, and the need to execute an action chunk before the next prediction to maintain consistent actions limit their applicability to latency-critical tasks or simple tasks with a short cycle time. While recent methods explored distillation or alternative policy structures to accelerate inference, these often demand additional training, which can be resource-intensive for large robotic models. In this paper, we introduce a novel approach inspired by the Real-Time Iteration (RTI) Scheme, a method from optimal control that accelerates optimization by leveraging solutions from previous time steps as initial guesses for subsequent iterations. We explore the application of this scheme in diffusion inference and propose a scaling-based method to effectively handle discrete actions, such as grasping, in robotic manipulation. The proposed scheme significantly reduces runtime computational costs without the need for distillation or policy redesign. This enables a seamless integration into many pre-trained diffusion-based models, in particular, to resource-demanding large models. We also provide theoretical conditions for the contractivity which could be useful for estimating the initial denoising step. Quantitative results from extensive simulation experiments show a substantial reduction in inference time, with comparable overall performance compared with Diffusion Policy using full-step denoising. Our project page with additional resources is available at: https://rti-dp.github.io/.
Related papers
- On-Device Diffusion Transformer Policy for Efficient Robot Manipulation [26.559546714450324]
Diffusion Policies have significantly advanced robotic manipulation tasks via imitation learning.<n>Their application on resource-constrained mobile platforms remains challenging due to computational inefficiency and extensive memory footprint.<n>We propose LightDP, a novel framework specifically designed to accelerate Diffusion Policies for real-time deployment on mobile devices.
arXiv Detail & Related papers (2025-08-01T15:14:39Z) - Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models? [62.579951798437115]
This work investigates iterative approximate evaluation for arbitrary prompts.<n>It introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework.<n>MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced rollouts.
arXiv Detail & Related papers (2025-07-07T03:20:52Z) - Fast and Stable Diffusion Planning through Variational Adaptive Weighting [3.745003761050674]
Diffusion models have recently shown promise in offline RL.<n>These methods often suffer from high training costs and slow convergence.<n>We introduce a closed-form approximation method for its online estimation under the flow-based generative modeling framework.<n> Experimental results on Maze2D and Kitchen tasks show that our method achieves competitive performance with up to 10 times fewer training steps.
arXiv Detail & Related papers (2025-06-20T02:12:04Z) - DiP-GO: A Diffusion Pruner via Few-step Gradient Optimization [22.546989373687655]
We propose a novel pruning method that derives an efficient diffusion model via a more intelligent and differentiable pruner.
Our approach achieves 4.4 x speedup for SD-1.5 without any loss of accuracy, significantly outperforming the previous state-of-the-art methods.
arXiv Detail & Related papers (2024-10-22T12:18:24Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
Diffusion Probabilistic Models (DPMs) have emerged as a powerful class of deep generative models.
They rely on sequential denoising steps during sample generation.
We propose a novel method that integrates denoising phases directly into the model's architecture.
arXiv Detail & Related papers (2024-05-31T08:19:44Z) - An Efficient Rehearsal Scheme for Catastrophic Forgetting Mitigation during Multi-stage Fine-tuning [55.467047686093025]
A common approach to alleviate such forgetting is to rehearse samples from prior tasks during fine-tuning.<n>We propose a sampling scheme, textttbf mix-cd, that prioritizes rehearsal of collateral damage'' samples.<n>Our approach is computationally efficient, easy to implement, and outperforms several leading continual learning methods in compute-constrained settings.
arXiv Detail & Related papers (2024-02-12T22:32:12Z) - DiffTAD: Temporal Action Detection with Proposal Denoising Diffusion [137.8749239614528]
We propose a new formulation of temporal action detection (TAD) with denoising diffusion, DiffTAD.
Taking as input random temporal proposals, it can yield action proposals accurately given an untrimmed long video.
arXiv Detail & Related papers (2023-03-27T00:40:52Z) - Streaming LifeLong Learning With Any-Time Inference [36.3326483579511]
We propose a novel lifelong learning approach, which is streaming, i.e., a single input sample arrives in each time step, single pass, class-incremental, and subject to be evaluated at any moment.
We additionally propose an implicit regularizer in the form of snap-shot self-distillation, which effectively minimizes the forgetting further.
Our empirical evaluations and ablations demonstrate that the proposed method outperforms the prior works by large margins.
arXiv Detail & Related papers (2023-01-27T18:09:19Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.