On-Device Diffusion Transformer Policy for Efficient Robot Manipulation
- URL: http://arxiv.org/abs/2508.00697v1
- Date: Fri, 01 Aug 2025 15:14:39 GMT
- Title: On-Device Diffusion Transformer Policy for Efficient Robot Manipulation
- Authors: Yiming Wu, Huan Wang, Zhenghao Chen, Jianxin Pang, Dong Xu,
- Abstract summary: Diffusion Policies have significantly advanced robotic manipulation tasks via imitation learning.<n>Their application on resource-constrained mobile platforms remains challenging due to computational inefficiency and extensive memory footprint.<n>We propose LightDP, a novel framework specifically designed to accelerate Diffusion Policies for real-time deployment on mobile devices.
- Score: 26.559546714450324
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion Policies have significantly advanced robotic manipulation tasks via imitation learning, but their application on resource-constrained mobile platforms remains challenging due to computational inefficiency and extensive memory footprint. In this paper, we propose LightDP, a novel framework specifically designed to accelerate Diffusion Policies for real-time deployment on mobile devices. LightDP addresses the computational bottleneck through two core strategies: network compression of the denoising modules and reduction of the required sampling steps. We first conduct an extensive computational analysis on existing Diffusion Policy architectures, identifying the denoising network as the primary contributor to latency. To overcome performance degradation typically associated with conventional pruning methods, we introduce a unified pruning and retraining pipeline, optimizing the model's post-pruning recoverability explicitly. Furthermore, we combine pruning techniques with consistency distillation to effectively reduce sampling steps while maintaining action prediction accuracy. Experimental evaluations on the standard datasets, \ie, PushT, Robomimic, CALVIN, and LIBERO, demonstrate that LightDP achieves real-time action prediction on mobile devices with competitive performance, marking an important step toward practical deployment of diffusion-based policies in resource-limited environments. Extensive real-world experiments also show the proposed LightDP can achieve performance comparable to state-of-the-art Diffusion Policies.
Related papers
- Real-Time Iteration Scheme for Diffusion Policy [23.124189676943757]
We introduce a novel approach inspired by the Real-Time Iteration (RTI) Scheme to accelerate inference.<n>We propose a scaling-based method to effectively handle discrete actions, such as grasping, in robotic manipulation.<n>The proposed scheme significantly reduces runtime computational costs without the need for distillation or policy redesign.
arXiv Detail & Related papers (2025-08-07T13:49:00Z) - Lightweight Task-Oriented Semantic Communication Empowered by Large-Scale AI Models [66.57755931421285]
Large-scale artificial intelligence (LAI) models pose significant challenges for real-time communication scenarios.<n>This paper proposes utilizing knowledge distillation (KD) techniques to extract and condense knowledge from LAI models.<n>We propose a fast distillation method featuring a pre-stored compression mechanism that eliminates the need for repetitive inference.
arXiv Detail & Related papers (2025-06-16T08:42:16Z) - LeanTTA: A Backpropagation-Free and Stateless Approach to Quantized Test-Time Adaptation on Edge Devices [13.355021314836852]
We present LeanTTA, a novel backpropagation-free and stateless framework for quantized test-time adaptation tailored to edge devices.<n>Our approach minimizes computational costs by dynamically updating normalization statistics without backpropagation.<n>We validate our framework across sensor modalities, demonstrating significant improvements over state-of-the-art TTA methods.
arXiv Detail & Related papers (2025-03-20T06:27:09Z) - A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning [61.403275660120606]
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives.<n>We propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method.<n>Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
arXiv Detail & Related papers (2025-03-02T13:43:53Z) - E2ED^2:Direct Mapping from Noise to Data for Enhanced Diffusion Models [15.270657838960114]
Diffusion models have established themselves as the de facto primary paradigm in visual generative modeling.<n>We present a novel end-to-end learning paradigm that establishes direct optimization from the final generated samples to initial noises.<n>Our method achieves substantial performance gains in terms of Fr'eche't Inception Distance (FID) and CLIP score, even with fewer sampling steps.
arXiv Detail & Related papers (2024-12-30T16:06:31Z) - Efficient Diffusion as Low Light Enhancer [63.789138528062225]
Reflectance-Aware Trajectory Refinement (RATR) is a simple yet effective module to refine the teacher trajectory using the reflectance component of images.
textbfReflectance-aware textbfDiffusion with textbfDistilled textbfTrajectory (textbfReDDiT) is an efficient and flexible distillation framework tailored for Low-Light Image Enhancement (LLIE)
arXiv Detail & Related papers (2024-10-16T08:07:18Z) - Efficient Text-driven Motion Generation via Latent Consistency Training [21.348658259929053]
We propose a motion latent consistency training framework (MLCT) to solve nonlinear reverse diffusion trajectories.<n>By combining these enhancements, we achieve stable and consistency training in non-pixel modality and latent representation spaces.
arXiv Detail & Related papers (2024-05-05T02:11:57Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
We introduce LD-Pruner, a novel performance-preserving structured pruning method for compressing Latent Diffusion Models.
We demonstrate the effectiveness of our approach on three different tasks: text-to-image (T2I) generation, Unconditional Image Generation (UIG) and Unconditional Audio Generation (UAG)
arXiv Detail & Related papers (2024-04-18T06:35:37Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments [31.326505188936746]
Several Deep Reinforcement Learning (DRL)-based placement techniques have been proposed in fog/edge computing environments.
We propose an actor-critic-based distributed application placement technique, working based on the IMPortance weighted Actor-Learner Architectures (IMPALA)
arXiv Detail & Related papers (2021-10-24T11:25:03Z) - Accelerating Deep Reinforcement Learning With the Aid of Partial Model:
Energy-Efficient Predictive Video Streaming [97.75330397207742]
Predictive power allocation is conceived for energy-efficient video streaming over mobile networks using deep reinforcement learning.
To handle the continuous state and action spaces, we resort to deep deterministic policy gradient (DDPG) algorithm.
Our simulation results show that the proposed policies converge to the optimal policy that is derived based on perfect large-scale channel prediction.
arXiv Detail & Related papers (2020-03-21T17:36:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.