Large Language Models Transform Organic Synthesis From Reaction Prediction to Automation
- URL: http://arxiv.org/abs/2508.05427v1
- Date: Thu, 07 Aug 2025 14:17:23 GMT
- Title: Large Language Models Transform Organic Synthesis From Reaction Prediction to Automation
- Authors: Kartar Kumar Lohana Tharwani, Rajesh Kumar, Sumita, Numan Ahmed, Yong Tang,
- Abstract summary: Large language models (LLMs) are beginning to reshape how chemists plan and run reactions in organic synthesis.<n>LLMs can propose synthetic routes, forecast reaction outcomes and instruct robots that execute experiments without human supervision.<n>We show how coupling LLMs with graph neural networks, quantum calculations and real-time spectroscopy shrinks discovery cycles and supports greener, data-driven chemistry.
- Score: 3.904238958136483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are beginning to reshape how chemists plan and run reactions in organic synthesis. Trained on millions of reported transformations, these text-based models can propose synthetic routes, forecast reaction outcomes and even instruct robots that execute experiments without human supervision. Here we survey the milestones that turned LLMs from speculative tools into practical lab partners. We show how coupling LLMs with graph neural networks, quantum calculations and real-time spectroscopy shrinks discovery cycles and supports greener, data-driven chemistry. We discuss limitations, including biased datasets, opaque reasoning and the need for safety gates that prevent unintentional hazards. Finally, we outline community initiatives open benchmarks, federated learning and explainable interfaces that aim to democratize access while keeping humans firmly in control. These advances chart a path towards rapid, reliable and inclusive molecular innovation powered by artificial intelligence and automation.
Related papers
- ChemActor: Enhancing Automated Extraction of Chemical Synthesis Actions with LLM-Generated Data [53.78763789036172]
We present ChemActor, a fully fine-tuned large language model (LLM) as a chemical executor to convert between unstructured experimental procedures and structured action sequences.<n>This framework integrates a data selection module that selects data based on distribution divergence, with a general-purpose LLM, to generate machine-executable actions from a single molecule input.<n>Experiments on reaction-to-description (R2D) and description-to-action (D2A) tasks demonstrate that ChemActor achieves state-of-the-art performance, outperforming the baseline model by 10%.
arXiv Detail & Related papers (2025-06-30T05:11:19Z) - LLM-Augmented Chemical Synthesis and Design Decision Programs [18.41721617026997]
We introduce an efficient scheme for encoding reaction pathways and present a new route-level search strategy.<n>We show that our LLM-augmented approach excels at retrosynthesis planning and extends naturally to the broader challenge of synthesizable molecular design.
arXiv Detail & Related papers (2025-05-11T15:43:00Z) - Interpretable Deep Learning for Polar Mechanistic Reaction Prediction [43.95903801494905]
We introduce PMechRP (Polar Mechanistic Reaction Predictor), a system that trains machine learning models on the PMechDB dataset.<n>We train compare a range of machine learning models, including transformer-based, graph-based and two-step siamese architectures.<n>Our best-performing approach was a hybrid model, which combines a 5-ensemble of Chemformer models with a two-step Siamese framework.
arXiv Detail & Related papers (2025-04-22T02:31:23Z) - Validation of the Scientific Literature via Chemputation Augmented by Large Language Models [0.0]
Chemputation is the process of programming chemical robots to do experiments using a universal symbolic language, but the literature can be error prone and hard to read due to ambiguities.
Large Language Models (LLMs) have demonstrated remarkable capabilities in various domains, including natural language processing, robotic control, and more recently, chemistry.
We introduce an LLM-based chemical research agent workflow designed for the automatic validation of synthetic literature procedures.
arXiv Detail & Related papers (2024-10-08T21:31:42Z) - BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chem is a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction.
Our model captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions.
This development empowers chemists to adeptly address novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science.
arXiv Detail & Related papers (2024-08-19T05:17:40Z) - ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining [56.15126714863963]
ChemMiner is an end-to-end framework for extracting chemical data from literature.<n>ChemMiner incorporates three specialized agents: a text analysis agent for coreference mapping, a multimodal agent for non-textual information extraction, and a synthesis analysis agent for data generation.<n> Experimental results demonstrate reaction identification rates comparable to human chemists while significantly reducing processing time, with high accuracy, recall, and F1 scores.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.<n>The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.<n>Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - MechRetro is a chemical-mechanism-driven graph learning framework for
interpretable retrosynthesis prediction and pathway planning [10.364476820771607]
MechRetro is a graph learning framework for interpretable retrosynthetic prediction and pathway planning.
By integrating chemical knowledge as prior information, we design a novel Graph Transformer architecture.
We demonstrate that MechRetro outperforms the state-of-the-art approaches for retrosynthetic prediction with a large margin on large-scale benchmark datasets.
arXiv Detail & Related papers (2022-10-06T01:27:53Z) - FusionRetro: Molecule Representation Fusion via In-Context Learning for
Retrosynthetic Planning [58.47265392465442]
Retrosynthetic planning aims to devise a complete multi-step synthetic route from starting materials to a target molecule.
Current strategies use a decoupled approach of single-step retrosynthesis models and search algorithms.
We propose a novel framework that utilizes context information for improved retrosynthetic planning.
arXiv Detail & Related papers (2022-09-30T08:44:58Z) - RetroXpert: Decompose Retrosynthesis Prediction like a Chemist [60.463900712314754]
We devise a novel template-free algorithm for automatic retrosynthetic expansion.
Our method disassembles retrosynthesis into two steps.
While outperforming the state-of-the-art baselines, our model also provides chemically reasonable interpretation.
arXiv Detail & Related papers (2020-11-04T04:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.