論文の概要: Multimodal LLM-assisted Evolutionary Search for Programmatic Control Policies
- arxiv url: http://arxiv.org/abs/2508.05433v2
- Date: Fri, 31 Oct 2025 09:00:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-03 15:46:17.454577
- Title: Multimodal LLM-assisted Evolutionary Search for Programmatic Control Policies
- Title(参考訳): マルチモーダルLCMによるプログラム制御手法の進化的探索
- Authors: Qinglong Hu, Xialiang Tong, Mingxuan Yuan, Fei Liu, Zhichao Lu, Qingfu Zhang,
- Abstract要約: この研究は、MLES(Multimodal Large Language Model-assisted Evolutionary Search)と呼ばれるプログラム制御ポリシー発見のための新しいアプローチを導入する。
MLESはマルチモーダルな大言語モデルをプログラム型ポリシー生成器として利用し、それらを進化的検索と組み合わせてポリシー生成を自動化する。
実験の結果,MLESは2つの標準制御タスクでPPOに匹敵する性能を達成できた。
- 参考スコア(独自算出の注目度): 36.44665658496622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning has achieved impressive success in control tasks. However, its policies, represented as opaque neural networks, are often difficult for humans to understand, verify, and debug, which undermines trust and hinders real-world deployment. This work addresses this challenge by introducing a novel approach for programmatic control policy discovery, called Multimodal Large Language Model-assisted Evolutionary Search (MLES). MLES utilizes multimodal large language models as programmatic policy generators, combining them with evolutionary search to automate policy generation. It integrates visual feedback-driven behavior analysis within the policy generation process to identify failure patterns and guide targeted improvements, thereby enhancing policy discovery efficiency and producing adaptable, human-aligned policies. Experimental results demonstrate that MLES achieves performance comparable to Proximal Policy Optimization (PPO) across two standard control tasks while providing transparent control logic and traceable design processes. This approach also overcomes the limitations of predefined domain-specific languages, facilitates knowledge transfer and reuse, and is scalable across various tasks, showing promise as a new paradigm for developing transparent and verifiable control policies.
- Abstract(参考訳): 深い強化学習は、制御タスクにおいて驚くべき成功を収めた。
しかしながら、そのポリシは不透明なニューラルネットワークとして表現され、人間が理解し、検証し、デバッグすることが困難な場合が多いため、信頼性が損なわれ、現実のデプロイメントを妨げます。
本研究は,MLES(Multimodal Large Language Model-assisted Evolutionary Search)と呼ばれる,プログラム制御ポリシ発見のための新しいアプローチを導入することで,この問題に対処する。
MLESはマルチモーダルな大言語モデルをプログラム型ポリシー生成器として利用し、それらを進化的検索と組み合わせてポリシー生成を自動化する。
ポリシ生成プロセスに視覚的なフィードバック駆動行動分析を統合して、障害パターンを特定し、目標とする改善をガイドする。
実験の結果,MLESは透過的な制御ロジックとトレーサブルな設計プロセスを提供しながら,2つの標準的な制御タスクにまたがるPPO(Proximal Policy Optimization)に匹敵する性能を達成した。
このアプローチはまた、事前定義されたドメイン固有言語の制限を克服し、知識の伝達と再利用を促進し、さまざまなタスクにわたってスケーラブルであり、透明で検証可能なコントロールポリシーを開発するための新しいパラダイムとして約束されている。
関連論文リスト
- Heterogeneous Group-Based Reinforcement Learning for LLM-based Multi-Agent Systems [25.882461853973897]
本稿では、相対報酬の利点を推定して政策更新を導くマルチエージェント不均一グループ政策最適化(MHGPO)を提案する。
MHGPOは、批判的ネットワークの必要性を排除し、安定性を向上し、計算オーバーヘッドを減らす。
また,効率性と有効性を両立させる3つのグループロールアウトサンプリング戦略も導入する。
論文 参考訳(メタデータ) (2025-06-03T10:17:19Z) - Learning Multimodal Behaviors from Scratch with Diffusion Policy Gradient [26.675822002049372]
Deep Diffusion Policy Gradient (DDiffPG)は、マルチモーダルポリシーから学習する新しいアクター批判アルゴリズムである。
DDiffPGはマルチモーダルトレーニングバッチを形成し、モード固有のQ-ラーニングを使用して、RL目的の固有の欲求を緩和する。
さらに,本手法では,学習モードを明示的に制御するために,モード固有の埋め込みにポリシーを条件付けることができる。
論文 参考訳(メタデータ) (2024-06-02T09:32:28Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
拡散モデルは強化学習(Reinforcement Learning, RL)において、その強力な表現力と多モード性に対して広く注目を集めている。
モデルなし拡散に基づくオンラインRLアルゴリズムQ-weighted Variational Policy Optimization (QVPO)を提案する。
具体的には、ある条件下でのオンラインRLにおける政策目標の厳密な下限を証明できるQ重み付き変動損失を導入する。
また,オンラインインタラクションにおける拡散ポリシのばらつきを低減し,サンプル効率を向上させるための効率的な行動ポリシーも開発している。
論文 参考訳(メタデータ) (2024-05-25T10:45:46Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
エネルギーベースモデル(EBM)として構造化された行動空間における政策をモデル化するための多元的政策最適化(DPO)を提案する。
新しい強力な生成モデルであるGFlowNetは、効率よく多様なEMMベースのポリシーサンプリングとして導入されている。
ATSCとBattleベンチマークの実験では、DPOが驚くほど多様なポリシーを効率的に発見できることが示されている。
論文 参考訳(メタデータ) (2023-02-23T10:48:09Z) - Efficient Domain Coverage for Vehicles with Second-Order Dynamics via
Multi-Agent Reinforcement Learning [9.939081691797858]
本稿では,2次動的エージェントを含む多エージェント効率ドメインカバレッジ問題に対する強化学習(RL)手法を提案する。
提案するネットワークアーキテクチャには,LSTMと自己注意が組み込まれている。
論文 参考訳(メタデータ) (2022-11-11T01:59:12Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
MPCのためのポリシ・フォー・モデル・予測制御フレームワークを提案する。
具体的には、パラメータ化コントローラとしてMPCを定式化し、パラメータ化の難しい決定変数を高レベルポリシーとして表現する。
シミュレーションと実環境の両方において,我々の制御器が堅牢かつリアルタイムに制御性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2021-12-07T17:39:24Z) - Generative Actor-Critic: An Off-policy Algorithm Using the Push-forward
Model [24.030426634281643]
連続制御タスクでは、ガウス分布を用いた広く使われているポリシーは、環境の非効率な探索をもたらす。
本稿では,ポリシの表現性を高めるためにプッシュフォワードモデルを用いて,密度のないオフポリチックアルゴリズムGenerative Actor-Criticを提案する。
プッシュフォワードポリシには,マルチモーダリティなどの望ましい特徴があり,アルゴリズムの探索と性能を向上できることを示す。
論文 参考訳(メタデータ) (2021-05-08T16:29:20Z) - Imitation Learning from MPC for Quadrupedal Multi-Gait Control [63.617157490920505]
本稿では,歩行ロボットの複数の歩行を模倣する単一ポリシーを学習する学習アルゴリズムを提案する。
モデル予測制御によって導かれる模擬学習のアプローチであるMPC-Netを使用し、拡張します。
ハードウェアに対する我々のアプローチを検証し、学習したポリシーが教師に取って代わって複数の歩留まりを制御できることを示します。
論文 参考訳(メタデータ) (2021-03-26T08:48:53Z) - Continuous Action Reinforcement Learning from a Mixture of Interpretable
Experts [35.80418547105711]
本稿では,複雑な関数近似を内部値予測に保持するポリシスキームを提案する。
この論文の主な技術的貢献は、この非微分不可能な状態選択手順によってもたらされた課題に対処することである。
論文 参考訳(メタデータ) (2020-06-10T16:02:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。