F2PASeg: Feature Fusion for Pituitary Anatomy Segmentation in Endoscopic Surgery
- URL: http://arxiv.org/abs/2508.05465v1
- Date: Thu, 07 Aug 2025 15:04:07 GMT
- Title: F2PASeg: Feature Fusion for Pituitary Anatomy Segmentation in Endoscopic Surgery
- Authors: Lumin Chen, Zhiying Wu, Tianye Lei, Xuexue Bai, Ming Feng, Yuxi Wang, Gaofeng Meng, Zhen Lei, Hongbin Liu,
- Abstract summary: Anatomical structure segmentation can provide surgeons with early warnings of regions that pose surgical risks.<n>F2PASeg is proposed to refine anatomical structure segmentation by leveraging both high-resolution image features and deep semantic embeddings.
- Score: 27.301261090674718
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Pituitary tumors often cause deformation or encapsulation of adjacent vital structures. Anatomical structure segmentation can provide surgeons with early warnings of regions that pose surgical risks, thereby enhancing the safety of pituitary surgery. However, pixel-level annotated video stream datasets for pituitary surgeries are extremely rare. To address this challenge, we introduce a new dataset for Pituitary Anatomy Segmentation (PAS). PAS comprises 7,845 time-coherent images extracted from 120 videos. To mitigate class imbalance, we apply data augmentation techniques that simulate the presence of surgical instruments in the training data. One major challenge in pituitary anatomy segmentation is the inconsistency in feature representation due to occlusions, camera motion, and surgical bleeding. By incorporating a Feature Fusion module, F2PASeg is proposed to refine anatomical structure segmentation by leveraging both high-resolution image features and deep semantic embeddings, enhancing robustness against intraoperative variations. Experimental results demonstrate that F2PASeg consistently segments critical anatomical structures in real time, providing a reliable solution for intraoperative pituitary surgery planning. Code: https://github.com/paulili08/F2PASeg.
Related papers
- Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement [61.573750959726475]
We consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks that may be supported via semantic segmentation models.<n>We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans.
arXiv Detail & Related papers (2025-07-22T13:24:45Z) - Surg-SegFormer: A Dual Transformer-Based Model for Holistic Surgical Scene Segmentation [6.285713987996377]
We introduce Surg-SegFormer, a novel prompt-free model that outperforms current state-of-the-art techniques.<n>By providing robust and automated surgical scene comprehension, this model significantly reduces the tutoring burden on expert surgeons.
arXiv Detail & Related papers (2025-07-06T09:04:25Z) - CF-Seg: Counterfactuals meet Segmentation [15.886397919997538]
Segmenting anatomical structures in medical images plays an important role in the quantitative assessment of various diseases.<n>Disease patterns can alter the appearance of surrounding healthy tissues, introduce ambiguous boundaries, or obscure critical anatomical structures.<n>In this paper, we generate counterfactual (CF) images to simulate how the same anatomy would appear in the absence of disease without altering the underlying structure.
arXiv Detail & Related papers (2025-06-19T11:01:33Z) - Surgical Foundation Model Leveraging Compression and Entropy Maximization for Image-Guided Surgical Assistance [50.486523249499115]
Real-time video understanding is critical to guide procedures in minimally invasive surgery (MIS)<n>We propose Compress-to-Explore (C2E), a novel self-supervised framework to learn compact, informative representations from surgical videos.<n>C2E uses entropy-maximizing decoders to compress images while preserving clinically relevant details, improving encoder performance without labeled data.
arXiv Detail & Related papers (2025-05-16T14:02:24Z) - Landmark-Free Preoperative-to-Intraoperative Registration in Laparoscopic Liver Resection [50.388465935739376]
Liver registration by overlaying preoperative 3D models onto intraoperative 2D frames can assist surgeons in perceiving the spatial anatomy of the liver clearly for a higher surgical success rate.<n>Existing registration methods rely heavily on anatomical landmark-based, which encounter two major limitations.<n>We propose a landmark-free preoperative-to-intraoperative registration framework utilizing effective self-supervised learning.
arXiv Detail & Related papers (2025-04-21T14:55:57Z) - Surgical Scene Segmentation by Transformer With Asymmetric Feature Enhancement [7.150163844454341]
Vision-specific transformer method is a promising way for surgical scene understanding.
We propose a novel Transformer-based framework with an Asymmetric Feature Enhancement module (TAFE)
The proposed method outperforms the SOTA methods in several different surgical segmentation tasks and additionally proves its ability of fine-grained structure recognition.
arXiv Detail & Related papers (2024-10-23T07:58:47Z) - Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
Key anatomical features, such as the number of organs, their shapes and relative positions, are crucial for building a robust multi-organ segmentation model.
We introduce a novel architecture called the Anatomy-Informed Network (AIC-Net)
AIC-Net incorporates a learnable input termed "Anatomical Prior", which can be adapted to patient-specific anatomy.
arXiv Detail & Related papers (2024-03-27T10:46:24Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - LCAUnet: A skin lesion segmentation network with enhanced edge and body
fusion [4.819821513256158]
LCAUnet is proposed to improve the ability of complementary representation with fusion of edge and body features.
Experiments on public available dataset ISIC 2017, ISIC 2018, and PH2 demonstrate that LCAUnet outperforms most state-of-the-art methods.
arXiv Detail & Related papers (2023-05-01T14:05:53Z) - Learning-Based Keypoint Registration for Fetoscopic Mosaicking [65.02392513942533]
In Twin-to-Twin Transfusion Syndrome (TTTS), abnormal vascular anastomoses in the monochorionic placenta can produce uneven blood flow between the two fetuses.
We propose a learning-based framework for in-vivo fetoscopy frame registration for field-of-view expansion.
arXiv Detail & Related papers (2022-07-26T21:21:12Z) - External Attention Assisted Multi-Phase Splenic Vascular Injury
Segmentation with Limited Data [72.99534552950138]
The spleen is one of the most commonly injured solid organs in blunt abdominal trauma.
accurate segmentation of splenic vascular injury is challenging for the following reasons.
arXiv Detail & Related papers (2022-01-04T02:35:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.