MoMA: A Mixture-of-Multimodal-Agents Architecture for Enhancing Clinical Prediction Modelling
- URL: http://arxiv.org/abs/2508.05492v1
- Date: Thu, 07 Aug 2025 15:28:34 GMT
- Title: MoMA: A Mixture-of-Multimodal-Agents Architecture for Enhancing Clinical Prediction Modelling
- Authors: Jifan Gao, Mahmudur Rahman, John Caskey, Madeline Oguss, Ann O'Rourke, Randy Brown, Anne Stey, Anoop Mayampurath, Matthew M. Churpek, Guanhua Chen, Majid Afshar,
- Abstract summary: We introduce a novel architecture, Mixture-of-Multimodal-Agents (MoMA), designed to leverage multiple large language model (LLM) agents for clinical prediction tasks.<n>MoMA employs specialized LLM agents ("specialist agents") to convert non-textual modalities, such as medical images and laboratory results, into structured textual summaries.<n>MoMA outperforms current state-of-the-art methods, highlighting its enhanced accuracy and flexibility across various tasks.
- Score: 5.334856176687711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal electronic health record (EHR) data provide richer, complementary insights into patient health compared to single-modality data. However, effectively integrating diverse data modalities for clinical prediction modeling remains challenging due to the substantial data requirements. We introduce a novel architecture, Mixture-of-Multimodal-Agents (MoMA), designed to leverage multiple large language model (LLM) agents for clinical prediction tasks using multimodal EHR data. MoMA employs specialized LLM agents ("specialist agents") to convert non-textual modalities, such as medical images and laboratory results, into structured textual summaries. These summaries, together with clinical notes, are combined by another LLM ("aggregator agent") to generate a unified multimodal summary, which is then used by a third LLM ("predictor agent") to produce clinical predictions. Evaluating MoMA on three prediction tasks using real-world datasets with different modality combinations and prediction settings, MoMA outperforms current state-of-the-art methods, highlighting its enhanced accuracy and flexibility across various tasks.
Related papers
- MEXA: Towards General Multimodal Reasoning with Dynamic Multi-Expert Aggregation [64.85885900375483]
MEXA is a training-free framework that performs modality- and task-aware aggregation of expert models.<n>We evaluate our approach on diverse multimodal benchmarks, including Video Reasoning, Audio Reasoning, 3D Understanding, and Medical QA.
arXiv Detail & Related papers (2025-06-20T16:14:13Z) - MIND: Modality-Informed Knowledge Distillation Framework for Multimodal Clinical Prediction Tasks [50.98856172702256]
We propose the Modality-INformed knowledge Distillation (MIND) framework, a multimodal model compression approach.<n>MIND transfers knowledge from ensembles of pre-trained deep neural networks of varying sizes into a smaller multimodal student.<n>We evaluate MIND on binary and multilabel clinical prediction tasks using time series data and chest X-ray images.
arXiv Detail & Related papers (2025-02-03T08:50:00Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.<n>Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.<n>Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.<n>Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.<n>MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.<n>Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - MEDFuse: Multimodal EHR Data Fusion with Masked Lab-Test Modeling and Large Language Models [11.798375238713488]
MEDFuse is a framework that integrates structured and unstructured medical data.
It achieves over 90% F1 score in the 10-disease multi-label classification task.
arXiv Detail & Related papers (2024-07-17T04:17:09Z) - EMERGE: Enhancing Multimodal Electronic Health Records Predictive Modeling with Retrieval-Augmented Generation [22.94521527609479]
EMERGE is a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR predictive modeling.<n>We extract entities from time-series data and clinical notes by prompting Large Language Models (LLMs) and align them with professional PrimeKG.<n>The extracted knowledge is then used to generate task-relevant summaries of patients' health statuses.
arXiv Detail & Related papers (2024-05-27T10:53:15Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
We propose a novel framework that tackles both discriminative and generative multimodal medical tasks.
The learning of Med-MoE consists of three steps: multimodal medical alignment, instruction tuning and routing, and domain-specific MoE tuning.
Our model can achieve performance superior to or on par with state-of-the-art baselines.
arXiv Detail & Related papers (2024-04-16T02:35:17Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
Existing models often lack the medical context relevent to clinical tasks, prompting the incorporation of external knowledge.
We propose REALM, a Retrieval-Augmented Generation (RAG) driven framework to enhance multimodal EHR representations.
Our experiments on MIMIC-III mortality and readmission tasks showcase the superior performance of our REALM framework over baselines.
arXiv Detail & Related papers (2024-02-10T18:27:28Z) - Multimodal Clinical Trial Outcome Prediction with Large Language Models [28.95412904299012]
We propose a multimodal mixture-of-experts (LIFTED) approach for clinical trial outcome prediction.<n>LIFTED unifies different modality data by transforming them into natural language descriptions.<n>Then, LIFTED constructs unified noise-resilient encoders to extract information from modal-specific language descriptions.
arXiv Detail & Related papers (2024-02-09T16:18:38Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.