Conformal Sets in Multiple-Choice Question Answering under Black-Box Settings with Provable Coverage Guarantees
- URL: http://arxiv.org/abs/2508.05544v1
- Date: Thu, 07 Aug 2025 16:22:49 GMT
- Title: Conformal Sets in Multiple-Choice Question Answering under Black-Box Settings with Provable Coverage Guarantees
- Authors: Guang Yang, Xinyang Liu,
- Abstract summary: We propose a frequency-based uncertainty quantification method under black-box settings.<n>Our approach involves multiple independent samplings of the model's output distribution for each input.<n>We show that frequency-based PE outperforms logit-based PE in distinguishing between correct and incorrect predictions.
- Score: 5.09580026885155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown remarkable progress in multiple-choice question answering (MCQA), but their inherent unreliability, such as hallucination and overconfidence, limits their application in high-risk domains. To address this, we propose a frequency-based uncertainty quantification method under black-box settings, leveraging conformal prediction (CP) to ensure provable coverage guarantees. Our approach involves multiple independent samplings of the model's output distribution for each input, with the most frequent sample serving as a reference to calculate predictive entropy (PE). Experimental evaluations across six LLMs and four datasets (MedMCQA, MedQA, MMLU, MMLU-Pro) demonstrate that frequency-based PE outperforms logit-based PE in distinguishing between correct and incorrect predictions, as measured by AUROC. Furthermore, the method effectively controls the empirical miscoverage rate under user-specified risk levels, validating that sampling frequency can serve as a viable substitute for logit-based probabilities in black-box scenarios. This work provides a distribution-free model-agnostic framework for reliable uncertainty quantification in MCQA with guaranteed coverage, enhancing the trustworthiness of LLMs in practical applications.
Related papers
- COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees [51.5976496056012]
COIN is an uncertainty-guarding selection framework that calibrates statistically valid thresholds to filter a single generated answer per question.<n>COIN estimates the empirical error rate on a calibration set and applies confidence interval methods to establish a high-probability upper bound on the true error rate.<n>We demonstrate COIN's robustness in risk control, strong test-time power in retaining admissible answers, and predictive efficiency under limited calibration data.
arXiv Detail & Related papers (2025-06-25T07:04:49Z) - Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction [0.0]
We propose a model-agnostic uncertainty quantification method that integrates dynamic threshold calibration and cross-modal consistency verification.<n>We show that the framework achieves stable performance across varying calibration-to-test split ratios, underscoring its robustness for real-world deployment in healthcare, autonomous systems, and other safety-sensitive domains.<n>This work bridges the gap between theoretical reliability and practical applicability in multi-modal AI systems, offering a scalable solution for hallucination detection and uncertainty-aware decision-making.
arXiv Detail & Related papers (2025-04-24T15:39:46Z) - Correctness Coverage Evaluation for Medical Multiple-Choice Question Answering Based on the Enhanced Conformal Prediction Framework [2.9599960287815144]
Large language models (LLMs) are increasingly adopted in medical question-answering (QA) scenarios.<n>LLMs can generate hallucinations and nonfactual information, undermining their trustworthiness in high-stakes medical tasks.<n>This paper proposes an enhanced Conformal Prediction framework for medical multiple-choice question-answering tasks.
arXiv Detail & Related papers (2025-03-07T15:22:10Z) - Rectifying Conformity Scores for Better Conditional Coverage [75.73184036344908]
We present a new method for generating confidence sets within the split conformal prediction framework.<n>Our method performs a trainable transformation of any given conformity score to improve conditional coverage while ensuring exact marginal coverage.
arXiv Detail & Related papers (2025-02-22T19:54:14Z) - Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
The consistency of the resulting uncertainty values hinges on the premise that the learning function conforms to the properties specified by the GP model.
We propose to wed the GP with the prevailing conformal prediction (CP), a distribution-free post-processing framework that produces it prediction sets with a provably valid coverage.
arXiv Detail & Related papers (2024-10-07T19:22:15Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees [68.33498595506941]
We introduce a novel uncertainty measure based on self-consistency theory.
We then develop a conformal uncertainty criterion by integrating the uncertainty condition aligned with correctness into the CP algorithm.
Empirical evaluations indicate that our uncertainty measure outperforms prior state-of-the-art methods.
arXiv Detail & Related papers (2024-06-29T17:33:07Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Conformal Prediction for Federated Uncertainty Quantification Under
Label Shift [57.54977668978613]
Federated Learning (FL) is a machine learning framework where many clients collaboratively train models.
We develop a new conformal prediction method based on quantile regression and take into account privacy constraints.
arXiv Detail & Related papers (2023-06-08T11:54:58Z) - A Semi-Bayesian Nonparametric Estimator of the Maximum Mean Discrepancy
Measure: Applications in Goodness-of-Fit Testing and Generative Adversarial
Networks [3.623570119514559]
We propose a semi-Bayesian nonparametric (semi-BNP) procedure for the goodness-of-fit (GOF) test.
Our method introduces a novel Bayesian estimator for the maximum mean discrepancy (MMD) measure.
We demonstrate that our proposed test outperforms frequentist MMD-based methods by achieving a lower false rejection and acceptance rate of the null hypothesis.
arXiv Detail & Related papers (2023-03-05T10:36:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.