Follow-Your-Instruction: A Comprehensive MLLM Agent for World Data Synthesis
- URL: http://arxiv.org/abs/2508.05580v1
- Date: Thu, 07 Aug 2025 17:12:54 GMT
- Title: Follow-Your-Instruction: A Comprehensive MLLM Agent for World Data Synthesis
- Authors: Kunyu Feng, Yue Ma, Xinhua Zhang, Boshi Liu, Yikuang Yuluo, Yinhan Zhang, Runtao Liu, Hongyu Liu, Zhiyuan Qin, Shanhui Mo, Qifeng Chen, Zeyu Wang,
- Abstract summary: Follow-Your-Instruction is a framework for automatically synthesizing high-quality 2D, 3D, and 4D data.<n>It constructs 3D layouts, and leverages Vision-Language Models (VLMs) for semantic refinement.<n>We evaluate the quality of the generated data through comprehensive experiments on the 2D, 3D, and 4D generative tasks.
- Score: 44.66179436245703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing demands of AI-generated content (AIGC), the need for high-quality, diverse, and scalable data has become increasingly crucial. However, collecting large-scale real-world data remains costly and time-consuming, hindering the development of downstream applications. While some works attempt to collect task-specific data via a rendering process, most approaches still rely on manual scene construction, limiting their scalability and accuracy. To address these challenges, we propose Follow-Your-Instruction, a Multimodal Large Language Model (MLLM)-driven framework for automatically synthesizing high-quality 2D, 3D, and 4D data. Our \textbf{Follow-Your-Instruction} first collects assets and their associated descriptions through multimodal inputs using the MLLM-Collector. Then it constructs 3D layouts, and leverages Vision-Language Models (VLMs) for semantic refinement through multi-view scenes with the MLLM-Generator and MLLM-Optimizer, respectively. Finally, it uses MLLM-Planner to generate temporally coherent future frames. We evaluate the quality of the generated data through comprehensive experiments on the 2D, 3D, and 4D generative tasks. The results show that our synthetic data significantly boosts the performance of existing baseline models, demonstrating Follow-Your-Instruction's potential as a scalable and effective data engine for generative intelligence.
Related papers
- mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data [71.352883755806]
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space.<n>However, the limited labeled multimodal data often hinders embedding performance.<n>Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck.
arXiv Detail & Related papers (2025-02-12T15:03:33Z) - Multimodal LLM for Intelligent Transportation Systems [0.0]
This paper introduces a novel 3-dimensional framework that encapsulates the intersection of applications, machine learning methodologies, and hardware devices.<n>Instead of using multiple machine learning algorithms, our framework uses a single, data-centric LLM architecture that can analyze time series, images, and videos.<n>We apply this LLM framework to different sensor datasets, including time-series data and visual data from sources like Oxford Radar RobotCar, D-Behavior (D-Set), nuScenes by Motional, and Comma2k19.
arXiv Detail & Related papers (2024-12-16T11:50:30Z) - Infinity-MM: Scaling Multimodal Performance with Large-Scale and High-Quality Instruction Data [35.85909368345219]
We introduce Infinity-MM, a large-scale multimodal instruction dataset.<n>We perform unified preprocessing, resulting in a dataset with over 40 million samples that ensures diversity and accuracy.<n>We propose a synthetic instruction generation method based on a tagging system and open-source Vision-Language Models.
arXiv Detail & Related papers (2024-10-24T09:03:48Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.<n>MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.<n>Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.<n>The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - 3DBench: A Scalable 3D Benchmark and Instruction-Tuning Dataset [13.808860456901204]
We introduce a scalable 3D benchmark, accompanied by a large-scale instruction-tuning dataset known as 3DBench.
Specifically, we establish the benchmark that spans a wide range of spatial and semantic scales, from object-level to scene-level.
We present a rigorous pipeline for automatically constructing scalable 3D instruction-tuning datasets, covering 10 diverse multi-modal tasks with more than 0.23 million QA pairs generated in total.
arXiv Detail & Related papers (2024-04-23T02:06:10Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.<n>Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.<n>We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - An Embodied Generalist Agent in 3D World [67.16935110789528]
We introduce LEO, an embodied multi-modal generalist agent that excels in perceiving, grounding, reasoning, planning, and acting in the 3D world.
We collect large-scale datasets comprising diverse object-level and scene-level tasks, which require considerable understanding of and interaction with the 3D world.
Through extensive experiments, we demonstrate LEO's remarkable proficiency across a wide spectrum of tasks, including 3D captioning, question answering, embodied reasoning, navigation and manipulation.
arXiv Detail & Related papers (2023-11-18T01:21:38Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.