論文の概要: DART: Dual Adaptive Refinement Transfer for Open-Vocabulary Multi-Label Recognition
- arxiv url: http://arxiv.org/abs/2508.05585v1
- Date: Thu, 07 Aug 2025 17:22:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 18:59:39.967878
- Title: DART: Dual Adaptive Refinement Transfer for Open-Vocabulary Multi-Label Recognition
- Title(参考訳): DART:オープンボキャブラリマルチラベル認識のためのデュアルアダプティブリファインダ
- Authors: Haijing Liu, Tao Pu, Hefeng Wu, Keze Wang, Liang Lin,
- Abstract要約: Open-Vocabulary Multi-Label Recognition (OV-MLR)は、画像内の複数の見えないオブジェクトカテゴリを識別することを目的としている。
ビジョンランゲージ事前学習モデルは強力なオープン語彙基盤を提供するが、弱い監督下では微粒な局所化に苦慮する。
本稿では,これらの制約を克服するためのDART(Dual Adaptive Refinement Transfer)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 59.203152078315235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-Vocabulary Multi-Label Recognition (OV-MLR) aims to identify multiple seen and unseen object categories within an image, requiring both precise intra-class localization to pinpoint objects and effective inter-class reasoning to model complex category dependencies. While Vision-Language Pre-training (VLP) models offer a strong open-vocabulary foundation, they often struggle with fine-grained localization under weak supervision and typically fail to explicitly leverage structured relational knowledge beyond basic semantics, limiting performance especially for unseen classes. To overcome these limitations, we propose the Dual Adaptive Refinement Transfer (DART) framework. DART enhances a frozen VLP backbone via two synergistic adaptive modules. For intra-class refinement, an Adaptive Refinement Module (ARM) refines patch features adaptively, coupled with a novel Weakly Supervised Patch Selecting (WPS) loss that enables discriminative localization using only image-level labels. Concurrently, for inter-class transfer, an Adaptive Transfer Module (ATM) leverages a Class Relationship Graph (CRG), constructed using structured knowledge mined from a Large Language Model (LLM), and employs graph attention network to adaptively transfer relational information between class representations. DART is the first framework, to our knowledge, to explicitly integrate external LLM-derived relational knowledge for adaptive inter-class transfer while simultaneously performing adaptive intra-class refinement under weak supervision for OV-MLR. Extensive experiments on challenging benchmarks demonstrate that our DART achieves new state-of-the-art performance, validating its effectiveness.
- Abstract(参考訳): Open-Vocabulary Multi-Label Recognition (OV-MLR) は、画像内の複数の見えないオブジェクトと見えないオブジェクトのカテゴリを識別することを目的としており、ピンポイントオブジェクトへの正確なクラス内ローカライゼーションと、複雑なカテゴリ依存をモデル化するための効果的なクラス間推論の両方を必要とする。
VLP(Vision-Language Pre-Training)モデルは強力なオープン語彙基盤を提供するが、弱い監督下では微粒な局所化に苦慮し、通常、基本的な意味論を超えて構造化された関係知識を明示的に活用することができず、特に目に見えないクラスのパフォーマンスを制限している。
これらの制限を克服するため、DART(Dual Adaptive Refinement Transfer)フレームワークを提案する。
DARTは2つの相乗的適応モジュールを介して凍結したVLPバックボーンを強化する。
クラス内リファインメントのために、アダプティブリファインメントモジュール(ARM)はパッチ機能を適応的に洗練し、画像レベルラベルのみを使用した識別的ローカライズを可能にする新しいWPS(Weakly Supervised Patch Selecting)損失と組み合わせる。
同時に、ATM(Adaptive Transfer Module)は、クラス関係グラフ(CRG)を活用し、Large Language Model(LLM)から抽出した構造化知識を用いて構築され、クラス表現間の関係情報を適応的に伝達するグラフアテンションネットワークを利用する。
DARTは、私たちの知る限り、OV-MLRの弱い監督下で適応型クラス内改良を同時に実施しながら、適応型クラス間転送のための外部LLM由来のリレーショナル知識を明示的に統合する最初のフレームワークである。
挑戦的なベンチマークに関する大規模な実験は、我々のDARTが新しい最先端のパフォーマンスを達成し、その有効性を検証していることを示している。
関連論文リスト
- Towards Fine-Grained Adaptation of CLIP via a Self-Trained Alignment Score [11.74414842618874]
適応中の微粒な相互モーダル相互作用をモデル化すると、より正確でクラス別な擬似ラベルが得られることを示す。
局所化画像特徴と記述言語埋め込みとを動的に整合させる革新的なアプローチであるFAIR(ファインフルアライメント・アンド・インタラクション・リファインメント)を導入する。
当社のアプローチであるFAIRは、きめ細かな教師なし適応において大幅なパフォーマンス向上を実現し、2.78%という顕著な全体的な向上を実現しています。
論文 参考訳(メタデータ) (2025-07-13T12:38:38Z) - Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
教師なしの人物再識別(USL-VI-ReID)は、モデル学習のための人間のアノテーションを使わずに、同じ人物の歩行者像を異なるモードでマッチングすることを目指している。
従来の手法では、ラベルアソシエーションアルゴリズムを用いて異質な画像の擬似ラベルを統一し、グローバルな特徴学習のためのコントラスト学習フレームワークを設計していた。
本稿では,各モダリティによって強調される特定のきめ細かいパターンを対象とするSALCR(Semantic-Aligned Learning with Collaborative Refinement)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-27T13:58:12Z) - Without Paired Labeled Data: End-to-End Self-Supervised Learning for Drone-view Geo-Localization [2.733505168507872]
ドローンビュージオローカライゼーション(DVGL)は、GPSタグ付き衛星画像を取得することで、ドローンの正確なローカライゼーションを実現することを目的としている。
既存の手法は、教師あり学習のために、厳密にペアリングされたドローン衛星画像に大きく依存している。
浅いバックボーンネットワークを用いたエンドツーエンドの自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2025-02-17T02:53:08Z) - FedRSClip: Federated Learning for Remote Sensing Scene Classification Using Vision-Language Models [23.830133838392964]
本稿では,VLM,特にCLIPに基づくリモートセンシング画像分類のための最初のフェデレーション学習フレームワークであるFedRSCLIPを提案する。
FedRSCLIPは、Prompt Learningを導入することで、フェデレーション環境におけるデータ不均一性と大規模モデル伝送の課題に対処する。
提案モデルの有効性を検証するため,既存の3つのリモートセンシング画像分類データセットに基づいてFed-RSICデータセットを構築した。
論文 参考訳(メタデータ) (2025-01-05T07:10:27Z) - Category-Adaptive Cross-Modal Semantic Refinement and Transfer for Open-Vocabulary Multi-Label Recognition [59.203152078315235]
本稿では,カテゴリ適応型クロスモーダル・セマンティック・リファインメント・アンド・トランスファー(C$2$SRT)フレームワークを提案する。
提案するフレームワークは,2つの相補的モジュール,すなわち,カテゴリ内セマンティックリファインメント(ISR)モジュールと,カテゴリ間セマンティックトランスファー(IST)モジュールから構成される。
OV-MLRベンチマークの実験は、提案されたC$2$SRTフレームワークが現在の最先端アルゴリズムより優れていることを明らかに示している。
論文 参考訳(メタデータ) (2024-12-09T04:00:18Z) - Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model [27.56988000960972]
ドメイン共有コンテキストとクラス固有コンテキストの両方の2つのコンテキストに基づいた新しいフレームワークを導入する。
このような二重プロンプト手法は、大規模言語モデルで符号化された暗黙的および明示的な要素を結合することによって、モデルの特徴表現を強化する。
また、構築されたプロンプトと視覚トークンの関係を定量化するために、不均衡最適輸送(UOT)理論を定式化する。
論文 参考訳(メタデータ) (2024-07-05T13:15:29Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
本稿では,オブジェクト構造情報を変換器に組み込んだSIM-Trans(Structure Information Modeling Transformer)を提案する。
提案した2つのモジュールは軽量化されており、任意のトランスフォーマーネットワークにプラグインでき、エンドツーエンドで容易に訓練できる。
実験と解析により,提案したSIM-Transが細粒度視覚分類ベンチマークの最先端性能を達成することを示した。
論文 参考訳(メタデータ) (2022-08-31T03:00:07Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Weakly supervised segmentation with cross-modality equivariant
constraints [7.757293476741071]
弱い教師付き学習は、セマンティックセグメンテーションにおける大きなラベル付きデータセットの必要性を軽減するための魅力的な代替手段として登場した。
本稿では,マルチモーダル画像シナリオにおける自己スーパービジョンを活用した新しい学習戦略を提案する。
私たちのアプローチは、同じ学習条件下で関連する最近の文学を上回ります。
論文 参考訳(メタデータ) (2021-04-06T13:14:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。